
On the Flow of Data, Information, and Time

Mart́ın Abadi1 and Michael Isard2

1 University of California at Santa Cruz
2 Microsoft Research?

Abstract. We study information flow in a model for data-parallel com-
puting. We show how an extant notion of virtual time can help guaran-
tee information-flow properties. For this purpose, we introduce functions
that express dependencies between inputs and outputs at each node in
a dataflow graph. Each node may operate over a distinct set of virtual
times—so, from a security perspective, it may have its own classification
scheme. A coherence criterion ensures that those local dependencies yield
global properties.

1 Introduction

The flow of data generally entails the flow of information, whose understanding
is often essential for the performance and correctness of dataflow computations.
For example, knowing that two dataflow computations on different input batches
do not interfere with one another can open opportunities for asynchronous, over-
lapped execution. It may perhaps also contribute to ensuring that sensitive in-
puts do not leak through public outputs, that untrusted data does not taint
trusted results, and other security and privacy properties.

Therefore, modern platforms for data-parallel computing sometimes track
dependencies, at least coarsely, primarily in order to enable efficient implementa-
tions. For instance, Spark maintains dependencies between Resilient Distributed
Datasets [17], representing their lineage. Naiad [11] associates messages and other
events with virtual times [4]; the partial order of virtual times, which need not
correspond to the order of execution, determines whether one event can poten-
tially result in another event.

Of course, understanding the flow of information does not necessarily mean
the same in data-parallel computing and in security and privacy. In particular,
covert communication channels are seldom a concern for data-parallel comput-
ing. Furthermore, at least at present, systems for data-parallel computing typi-
cally leverage strong trust assumptions: most systems code is trusted, and even
the environment is often assumed to be somewhat benign.

Nevertheless, we explore the idea that models and systems for data-parallel
computing can offer substantial information-flow control. We focus on concepts
and facilities for information-flow control, rather than on their applications.
Specifically, we consider the computational model that underlies Naiad, called

? Most of this work was done at Microsoft Research. M. Abadi is now at Google.

timely dataflow. We find that, after a modest strengthening (and a change of
perspective), timely dataflow offers information-flow properties that resemble
familiar ones from the security literature.

As indicated above, timely dataflow supports partially ordered virtual times.
These virtual times may be viewed as analogous to security levels or classifica-
tions. Furthermore, timely dataflow considers the question of whether one event
at a given virtual time t and location l in a dataflow graph could result in another
event at a virtual time t′ and location l′ in the same graph. The expectation that
an event at (l, t) cannot result in an event at (l′, t′) “in the past” is analogous to
conditions on flows across security levels, but weaker. So we identify alternative
concepts and properties that, although consistent with timely dataflow, lead to
non-interference guarantees.

One somewhat unusual aspect of the resulting framework is that it allows
the use of different sets of virtual times (that is, different sets of security levels)
in different parts of a system. For example, virtual times inside loops may have
coordinates that correspond to loop counters, and can distinguish data from
different loop iterations that may be processed simultaneously; those coordinates
do not make sense outside loops. From a security viewpoint, virtual times in
different parts of a computation may reflect the classification schemes of different
organizations, or the classification schemes appropriate to the different kinds of
data being processed. While simple levels like “Public” and “Secret” are allowed,
there is no built-in assumption or requirement that they mean and are treated
the same everywhere. Moreover, each neighborhood of a dataflow graph could
have its own custom levels. Finally, a virtual time may be a tuple that includes
both structural information (such as loop counters) and other facets, such as
secrecy and integrity levels. We define a criterion that ensures the coherence of
the use of levels.

Our main results enable us to reason about systems organized as dataflow
graphs, and to characterize the information that each node in such a graph
may obtain. As a small example (to which we return in Section 5.4), consider
a system that receives and processes messages that each pertain to one of two
users U1 and U2. Suppose that a particular node p0 in this system forwards data
about each user to a different destination, p1 or p2 respectively. We abstract p0’s
behavior by stating that its messages to p1 do not depend on its inputs about U2,
and symmetrically its messages to p2 do not depend on its inputs about U1. We
make such statements directly, formulating them in terms of virtual times; in
other approaches, analogous statements might be encoded in type annotations.
From p0’s properties and the topology of the dataflow graph we may then derive
that p1 learns nothing from the inputs about U2, and that p2 learns nothing
from the inputs about U1. More generally, our work provides an approach for
establishing information-flow properties of a dataflow system from properties of
individual nodes and the topology of the system.

The next section is a review of the relevant aspects of the model of computa-
tion that we consider. Section 3 introduces auxiliary concepts: frontiers, filtering,
and reordering. Section 4 defines and studies the machinery for specifying de-

2

pendency information at the level of individual nodes. Section 5 presents lemmas
and our main results, including the coherence criterion and the non-interference
guarantees. Section 6 concludes. Although this paper aims to be self-contained,
it stems from a larger effort to understand, improve, and apply timely dataflow.
Section 6 briefly discusses aspects of this effort relevant to security and some
directions for further work. An appendix contains proofs.

2 Model of computation

This section reviews the setting for our work. As explained in Section 6, it is a
fragment of the full timely dataflow model, which was introduced in the context
of Naiad [11] and whose formal study is the subject of another paper, currently in
preparation. Here, therefore, we do not describe the model in full detail, focusing
instead on the main ideas and aspects relevant to our present purposes.

As in other dataflow models (e.g., [5]), programs are organized as directed
graphs, in which nodes do the processing and messages travel on edges. We
write P for the set of nodes (or processors) and E for the set of edges (or
channels). We refer to both nodes and edges as locations. For simplicity, we
assume that the source src(e) and the destination dst(e) of each edge e are
distinct nodes; however, in general, graphs may contain cycles. We write M for
the set of messages, and M∗ for the set of finite sequences of messages.

Each message m is associated with a virtual time time(m). The virtual times
form a partial order (not necessarily linear, not necessarily a lattice), which we
write (T,≤). There is no built-in requirement that the order of processing of
messages correspond in any way to their virtual times.

We can describe the state of a system as a mapping from nodes to their local
states plus a mapping from edges to their contents. We write LocState(p) for the
local state of node p, and ΣLoc for the set of local states; we are not concerned
with the specifics of how local state is organized. We write Q(e) for the finite
sequence of messages on edge e.

A local history for a node p is a finite sequence 〈〈s, (e1,m1), . . . , (ek,mk)〉〉
that starts with an initial local state s that satisfies a given predicate Initial(p),
and is followed by (zero, one, or more) pairs of the form (ei,mi), which indicate
the messages that the node has received and the corresponding edges. We write
Histories(p) for the set of local histories of p.

We assume that initially each node p is in a local state that satisfies Initial(p),
and for each edge e we let Q(e) contain an arbitrary finite sequence of messages,
so as to get computations started. (This detail constitutes a minor variation from
other presentations of timely dataflow, in which computations can get started by
other means.) Thereafter, at each step of computation (atomically, for simplic-
ity), a node that has messages on incoming edges picks one of them, processes it,
and places messages on its output edges. The processing is defined by a function
g1(p) for each node p, which we apply to p’s local state s and to a pair (e,m),
and which produces a tuple that contains a new state s′ and finite sequences of

3

messages µ1, . . . , µk on p’s output edges e1, . . . , ek, respectively. We write:

g1(p)(s, (e,m)) = (s′, 〈e1 7→µ1, . . . , ek 7→µk〉)

where 〈e1 7→µ1, . . . , ek 7→µk〉 is the function that maps e1 to µ1, . . . , ek to µk.
Iterating this function g1(p), we obtain a function g(p) which takes as input
an entire local history h and produces a new state s′ and the cumulative finite
sequences of messages µ1, . . . , µk for the output edges e1, . . . , ek, as follows:

– g(p)(〈〈s〉〉) = (s, 〈e1 7→∅, . . . , ek 7→∅〉),
– if g(p)(h) = (s′, 〈e1 7→µ1, . . . , ek 7→µk〉) and g1(p)(s′, (d,m)) = (s”, 〈e1 7→µ′1,
. . . , ek 7→µ′k〉), then g(p)(h·(d,m)) = (s”, 〈e1 7→µ1·µ′1, . . . , ek 7→µk·µ′k〉).

As in this definition, we write ∅ for the empty sequence and 〈〈a0, a1, . . .〉〉 for a
sequence that contains a0, a1, . . . , and we use · both for adding elements to
sequences and for appending sequences. We let ΠLoc(s

′, 〈e1 7→µ1, . . . , ek 7→µk〉) =
s′ and Πei(s

′, 〈e1 7→µ1, . . . , ek 7→µk〉) = µi for i = 1 . . . k.

The overall specification of a system denotes a set of allowed sequences of
states. Each of the sequences starts in an initial state, and every pair of consec-
utive states is either identical (a “stutter”) or related by a step of computation.
We add an auxiliary state function H (a history variable [1]) in order to track
local histories: H(p) represents p’s local history; thus, each state is defined by
values for the state functions LocState, Q, and H. We express the specification
in TLA [8], in Figure 1, with the following notations. A primed state function
(Q′, LocState ′, or H ′) in an action refers to the value of the state function in
the “next” state (the state after the action); is the temporal-logic operator
“always”; given an action N and a list of expressions v1, . . . , vk, [N]v1,...,vk ab-
breviates N ∨ ((v′1 = v1) ∧ . . . ∧ (v′k = vk)).

We call ISpec the complete specification, InitProp the initial conditions, and
MessR the action that represents a step of computation. When Q0 is a (state-
independent) function from E to M∗, we also write ISpec(Q0) for the conjunction
of ISpec with ∀e ∈ E.Q(e) = Q0(e), which says that the initial values of the
queues are as given by Q0.

The definition of the action MessR describes how a node p dequeues a mes-
sage m and reacts to it, producing messages. This action is a relaxed version of
a simpler action that we call Mess (hence the name MessR) and according to
which p takes a message from the head of Q(e), so Q(e) = m·Q′(e). (The head
of a queue is to the left, the tail to the right.) According to MessR, on the other
hand, p is allowed to take any message m in Q(e) such that there is no message
n ahead of m with time(n) ≤ time(m); so, for some u and v, Q(e) = u·m·v,
Q′(e) = u·v, and u does not contain any message n with time(n) ≤ time(m).
Thus, queues are not strictly FIFO. This relaxation can be useful in support of
optimizations, as it can allow more messages for a given time to be processed to-
gether. It is also important for work on fault-tolerance in which we are currently
engaged, and seems attractive in the present context as well. (See Section 5.)

4

InitProp
∆
=


∀p ∈ P.LocState(p) ∈ Initial(p)
∧
∀e ∈ E.Q(e) ∈M∗
∧
∀p ∈ P.H(p) = 〈〈LocState(p)〉〉



MessR
∆
= ∃p ∈ P.MessR1 (p)

MessR1 (p)
∆
=


∃m ∈M.∃e ∈ E such that p = dst(e).∃u, v ∈M∗.
Q(e) = u·m·v ∧Q′(e) = u·v
∧
∀n ∈ u.time(n) 6≤ time(m)
∧
Mess2 (p, e,m)



Mess2 (p, e,m)
∆
=



let
{e1, . . . , ek} = {d ∈ E | src(d) = p},
s = LocState(p),
(s′, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, (e,m))
in
LocState ′(p) = s′

∧
Q′(e1) = Q(e1)·µ1 . . . Q

′(ek) = Q(ek)·µk

∧
H ′(p) = H(p)·(e,m)
∧
∀q ∈ P 6= p.LocState ′(q) = LocState(q)
∧
∀d ∈ E − {e, e1, . . . , ek}.Q′(d) = Q(d)
∧
∀q ∈ P 6= p.H ′(q) = H(q)



ISpec
∆
= InitProp ∧ [MessR]LocState,Q,H

ISpec(Q0) = ISpec ∧ ∀e ∈ E.Q(e) = Q0(e)

Fig. 1. The specification

5

3 Frontiers, filtering, and other auxiliary concepts

We introduce a few auxiliary notions, namely frontiers, filtering, and reordering.

3.1 Frontiers

A subset S of T is downward closed if and only if, for all t and t′, t ∈ S and
t′ ≤ t imply t′ ∈ S. We call such a subset a frontier , and write F for the set of
frontiers; we often let f range over frontiers. When S ⊆ T , we write Close↓(S)
for the downward closure of S (the least frontier that contains S).

As indicated in the Introduction, we may view virtual times as security levels.
From that perspective, a frontier is a set of security levels S such that if S
includes one level it includes all lower levels. For example, in multi-level security
(MLS), such a set S might arise as the set of levels of the objects that a subject
at a given level can read.

3.2 Filtering

We introduce filtering operations on histories and on sequences of messages.
These filtering operations keep or remove all elements whose times are in a
given frontier. Thus, they are analogous to the purge functions that appear in
security models. (See, for example, McLean’s survey [9, Section 2.2.1].)

Given a local history h and a frontier f , we write h@f for the subsequence of
h obtained by removing (filtering out) all events (d,m) such that time(m) 6∈ f .
More precisely, h@f is defined inductively by:

– 〈〈s〉〉@f = 〈〈s〉〉,
– (h·(d,m))@f = (h@f)·(d,m) if time(m) ∈ f and (h·(d,m))@f = h@f oth-

erwise.

Similarly, when u is a sequence of messages, we write u@f for the subsequence
obtained by removing those messages whose times are not in f . Finally, given a
sequence of messages u and a frontier f , we write u\@f for the subsequence of u
consisting only of messages whose times are not in f .

3.3 Reordering

We define a relation ↪→ on finite sequences of messages: it is the least reflexive
and transitive relation such that, for u, v ∈M∗ and m1,m2 ∈M , if time(m1) 6≤
time(m2) then u·m1·m2·v ↪→u·m2·m1·v. We call it the reordering relation.

This relation is a counterpart at the level of message sequences to the reorder-
ing that happens in message processing according to action MessR of Figure 1.
It is therefore helpful for analyzing that specification and its implementations.

6

3.4 Subtraction

Subtraction for message sequences (−) is defined inductively by:

u− ∅ = u

u−m·v = (u−m)− v
(m·u−m) = u

(m′·u−m) = m′·(u−m) for m′ 6= m

∅ −m = ∅

The last clause (∅−m = ∅) appears in order to make subtraction a total opera-
tion. In our uses of subtraction, we sometimes ensure explicitly that it does not
apply.

3.5 Some properties of filtering and reordering

We state a few properties of filtering and reordering. Throughout, f , f1, f2,
f3 range over frontiers; u, v, w range over message sequences; h ranges over
histories.

Proposition 1. If f1 = f2 ∩ f3 then h@f1 = h@f2@f3.

Proposition 2. If u ↪→ v then u@f ↪→ v@f .

Proposition 3. If u ↪→ v then (u− w) ↪→ (v − w).

Proposition 4. If u ↪→ v·w then (u− v@f) ↪→ v\@f ·w.

Proposition 5. If u@f = u′@f , then (u− v@f)@f = (u′ − v@f)@f .

The last two propositions (Propositions 6 and 7) are useful in reasoning with
the action MessR because they provide methods for establishing that, for a
sequence u and element m, there is no element n with time(n) ≤ time(m) to the
left of m in u (in a prefix v). They say, respectively, that it suffices to consider
any reordering u′ of u or any sequence u′ that coincides with u on some frontier
f such that time(m) ∈ f .

Proposition 6. If u ↪→u′, u′ = v′·m·w′, and time(n) 6≤ time(m) for all n in
v′, then there exist v and w such that u = v·m·w, and time(n) 6≤ time(m) for
all n in v.

Proposition 7. If u@f = u′@f , u′ = v′·m·w′, time(m) ∈ f , and time(n) 6≤
time(m) for all n in v′, then there exist v and w such that u = v·m·w, and
time(n) 6≤ time(m) for all n in v.

7

4 From timeliness to determination

Time domains and the could-result-in relation are central to timely dataflow.
Although we do not need a formal definition of these notions for our present
purposes, we review them informally in this section, in order to motivate our
new definitions. While the could-result-in relation focuses on whether one event
might trigger another event (directly or indirectly), we are interested in whether
a history or a part of a history suffices for determining an output. These two
questions are closely related, as we show. We treat the latter via frontier trans-
formers, which are functions that map frontiers for inputs to frontiers for outputs
and which we introduce and study in this section.

4.1 Time domains

Timely dataflow does not require that all nodes deal with the same set of virtual
times. In particular, the set T may be the disjoint union of multiple sets Tp,
which we call time domains, one for each node p in a dataflow graph. Node p
may expect inputs with times in set Tp and produce outputs with times in the
sets appropriate for their recipients.

For example, in Naiad, nodes for loop ingress expect inputs with times
of the form (t1, . . . , tk), and produce outputs with an extra coordinate, set
to 0: (t1, . . . , tk, 0). Nodes for loop egress expect inputs with times of the form
(t1, . . . , tk, tk+1), and drop the last coordinate on outputs. Nodes for loop feed-
back expect inputs with times of the form (t1, . . . , tk), and increment the last
coordinate of these times. In all cases, the appropriate value of k is determined
by the nesting depth of the loop.

Beyond these standard examples, it is possible, at least in principle, for pro-
grammers to define custom nodes, with their own ideas about virtual times.
Thus, a custom node may consume inputs with times 1 and 2, but, somehow,
produce results with times “Public” and “Secret”; or a custom node may con-
sume inputs with times “Public” and “Secret”, but produce results with finer
classifications, such as “(Secret,A)” or “(Secret,B)”, where “A” and “B” might
indicate compartments, retention policies, or other properties of interest.

For simplicity, we proceed with the assumption that all inputs of a node are
in the same time domain, but the outputs on each outgoing edge may be in a
different time domain. It is straightforward to accommodate inputs in different
time domains by inserting relay nodes that translate across time domains on
incoming edges.

4.2 The could-result-in relation

When one event at a given virtual time t and location l in a dataflow graph
can potentially result in another event at a virtual time t′ and location l′ in
the same graph, we say that (l, t) could-result-in (l′, t′). We write this relation
(l, t) (l′, t′). For example, suppose that whenever node p receives any message
m with time(m) = 1 on incoming edge d, p outputs a message n with time(n) = 2

8

on outgoing edge e; in this case we would have that (d, 1) (e, 2). In Naiad,
the could-result-in relation is exploited for supporting completion notifications,
which tell a node when it will no longer see messages for a given time. It also
allows an implementation to reclaim resources that correspond to pairs (l, t) at
which no more events are possible.

Informally, we expect that an event at (l, t) cannot result in an event at
(l′, t′) “in the past”. Naiad relies on this property in some of its algorithms. It
holds rather obviously for most nodes, since, in response to an input at time t,
most nodes would produce outputs at the same time t. However, defining “in the
past” is delicate across time domains; fortunately, the approach that we develop
in this paper does not require it.

As suggested in the Introduction, the expectation that an event cannot re-
sult in another event “in the past” is somewhat analogous to conditions on
flows across security levels. For example, one may generally expect that a “low-
integrity” event cannot cause a “high-integrity” event, except perhaps in trusted
system components. Obviously, however, this property is not quite equivalent to
a non-interference guarantee, or to other strong guarantees defined in the secu-
rity literature [9]. Even if an input on edge d at time 2 may not trigger an output
on edge e at time 1 for a node p, so we do not have (d, 2) (e, 1), the input at
time 2 may affect the contents of future messages at time 1, if p is stateful and
sends such messages in response to future inputs at times 0 and 1. Thus, inputs
at time 2 may interfere with outputs at time 1.

4.3 Frontier transformers

Going beyond what the could-result-in relation can express, knowing whether
subsets of inputs determine subsets of outputs can be useful for a variety of
purposes. We are finding it valuable in the context of current work on fault-
tolerance. It is also clearly valuable for security, in which we often want, for
instance, that “Public” inputs determine “Public” outputs, or that “Trusted”
inputs determine “Trusted” outputs.

Formally, for each edge e ∈ E, we assume a function φ(e) that maps frontiers
to frontiers (so, φ(e) is a frontier transformer). Its main intended property is
Condition 1 which says that h gives rise to a message on e in φ(e)(f) if and only
if so does h@f , and with messages in the same order and multiplicity.

Condition 1 For all f ∈ F , if g(p)(h) = (. . . , 〈. . . ei 7→µi . . .〉) and g(p)(h@f) =
(. . . , 〈. . . ei 7→µ′i . . .〉) then µi@φ(ei)(f) = µ′i@φ(ei)(f).

For many simple nodes, φ(e) may be the identity function for all outgoing
edges e. On the other hand, the identity function is not always appropriate,
particularly (but not only) when a node produces outputs in a different time
domain than its inputs. Some of the nodes described in Section 4.1 exemplify
this point. Entering a loop at depth k+1, inputs to an ingress node in a frontier
f determine outputs for all times {(t1, . . . , tk, tk+1) | (t1, . . . , tk) ∈ f}. In a
loop at depth k, inputs to a feedback node in a frontier f determine outputs in

9

{(t1, . . . , tk + 1) | (t1, . . . , tk) ∈ f}. As another simple example, when T consists
of two unrelated points t1 and t2 that represent private data for two users U1

and U2, we may have a node with outgoing edges e1 and e2 that demultiplexes
data for U1 and U2, so that φ(e1)({t1}) = T and φ(e2)({t2}) = T .

The function φ need not be as accurate as possible. In particular, φ(e) could
always be completely uninformative (as small as possible), with φ(e)(f) = ∅ for
all f 6= T and φ(e)(T) = T . However, a more informative φ is typically more
helpful, and generally easy to find.

In this paper, we do not investigate how to check that a node actually satisfies
Condition 1 for a given φ. Section 6 returns briefly to this subject.

4.4 Relating φ to

With the aim of clarifying the relation between φ and , we argue that is
included in φ at each node. More precisely, if an event at a node p at time t1
could-result-in an event at time t2 on one of the outgoing edges e, and t2 is in
φ(e)(f) for some frontier f , then t1 is in f . For example, if f includes only the
security level “Public”, and φ(e) is simply the identity function, this property
entails that if an event at p at time t1 could-result-in a message on e at the level
“Public”, then t1 is also in f and hence equals “Public”.

Proposition 8. Assume that φ satisfies Condition 1. Suppose src(e) = p and
(p, t1) (e, t2). Then, for all f , if t2 ∈ φ(e)(f) then t1 ∈ f .

This proposition relies on the following property of : if (p, t1) (e, t2) and
src(e) = p then there exist a history h for p, a state s such that

g(p)(h) = (s, . . .)

and an event (d,m) such that t1 ≤ time(m) and

g1(p)(s, (d,m)) = (. . . , 〈. . . e7→µ . . .〉)

where some element of µ has time ≤ t2. In this paper we simply assume this
property; the proof that it actually holds requires a definition of , which we
omit.

4.5 A special case of Condition 1

In the security literature, non-interference properties are sometimes expressed in
terms of single levels (e.g., outputs at level “Trusted” are determined by inputs
at level “Trusted”, or outputs to a user U are determined by U ’s inputs), rather
than in terms of sets of levels analogous to frontiers. McLean’s survey [9], for
example, phrases purging functions and non-interference in terms of individual
users, while the classic article by Goguen and Meseguer [3] refers to groups of
users.

10

We therefore investigate the power of a special case of Condition 1 in which
the frontier f is not arbitrary but rather consists of (the downward closure of) a
single time. Such a special case is often sufficient, and sometimes equivalent to
the full Condition 1. In particular, when (T,≤) is a finite linear order, the only
frontiers are ∅ and the sets of the form Close↓({t}) for some t ∈ T .

Condition 2 captures this special case. It specializes Condition 1 to f of the
form Close↓({t}), for t ∈ T . It does not require that φ(ei)(f) be of the same
form.

Condition 2 For all t ∈ T , if f = Close↓({t}), g(p)(h) = (. . . , 〈. . . ei 7→µi . . .〉),
and g(p)(h@f) = (. . . , 〈. . . ei 7→µ′i . . .〉) then µi@φ(ei)(f) = µ′i@φ(ei)(f).

We generally adopt Condition 1 rather than Condition 2, because Condition 2
is strictly weaker than Condition 1. The following small but tricky example
illustrates this point. Perhaps with the security literature in mind (e.g., [2]),
one may imagine that a lattice structure for the set of times T would help,
and specifically that it would enable us to represent an arbitrary frontier f by
the least upper bound of its elements. However, a variant of the example shows
that Condition 2 is strictly weaker than Condition 1 even if T is a very simple
distributive lattice.

Example 1. Suppose that T consists of three unrelated elements a, b, and c, and
a fourth element d below b and c but not a.

The example concerns a simple node p that ignores its initial state. It has a
single input edge e and a single output edge e′, for which we take φ(e′)(f) = f .
Moreover, the node ignores the contents of input messages, considering only
their times. It also ignores all input messages at times b and c. As output, it
may produce ∅, 〈〈mb,mc〉〉, or 〈〈mc,mb〉〉, where mb and mc are distinct, fixed
messages with time(mb) = b and time(mc) = c. So the function g(p) for this node
can be regarded as mapping a sequence of (a and d) times for input messages to
∅, 〈〈mb,mc〉〉, or 〈〈mc,mb〉〉. We write ḡ for this mapping, and define it as follows:

ḡ(a∗) = ∅
ḡ(a+·d·u) = 〈〈mb,mc〉〉

ḡ(d·u) = 〈〈mc,mb〉〉

where u is an arbitrary sequence of a’s and d’s. It is straightforward to define a
function g1(p) that induces a function g(p) that corresponds to ḡ.

Let f = {b, c, d}. Condition 1 fails for this f . We have that ḡ((a·d)@f) =
ḡ(d) = 〈〈mc,mb〉〉, so ḡ((a·d)@f)@f = 〈〈mc,mb〉〉, while ḡ(a·d) = 〈〈mb,mc〉〉, so
ḡ(a·d)@f = 〈〈mb,mc〉〉, hence

ḡ((a·d)@f)@f 6= ḡ(a·d)@f

On the other hand, in the special case of frontiers of the form Close↓({t}),
where t ∈ T , Condition 1 holds:

11

– For t = a: For all u, ḡ(u@Close↓({a})) = ∅, and ḡ(u) never contains a
message at time a, so

ḡ(u@Close↓({a}))@Close↓({a}) = ḡ(u)@Close↓({a})

– For t = b: For all u, ḡ(u@Close↓({b})) = 〈〈mc,mb〉〉 if u contains a d, and
is ∅ otherwise; so ḡ(u@Close↓({b}))@Close↓({b}) = 〈〈mb〉〉 if u contains a d,
and is ∅ otherwise. On the other hand, ḡ(u) = 〈〈mc,mb〉〉 or 〈〈mb,mc〉〉 if u
contains a d, and is ∅ otherwise; so ḡ(u)@Close↓({b}) = 〈〈mb〉〉 if u contains
a d, and is ∅ otherwise. Therefore, in all cases,

ḡ(u@Close↓({b}))@Close↓({b}) = ḡ(u)@Close↓({b})

– For t = c: This case is exactly analogous to that of t = b.
– For t = d: For all u, ḡ(u)@Close↓({d}) = ∅, so

ḡ(u@Close↓({d}))@Close↓({d}) = ḡ(u)@Close↓({d})

The partial order of times, as defined above, is not a lattice. We can, however,
give a variant of the example in which it is. We modify the partial order by
placing a above b and c (and therefore above d as well); we do not modify the
function ḡ. The argument that Condition 1 fails for the frontier {b, c, d} but
holds for Close↓({t}) when t ∈ {b, c, d} is exactly as above. It remains to check
that Condition 1 holds for Close↓({t}) when t = a.

– For t = a: For all u, ḡ(u@Close↓({a})) = ḡ(u), so

ḡ(u@Close↓({a}))@Close↓({a}) = ḡ(u)@Close↓({a})

4.6 Another perspective on φ and its properties

Intuitively, we may expect φ to have additional properties beyond Condition 1,
and such properties are sometimes useful for working with φ. For example, we
may expect that, for all e, φ(e)(T) = T , since the initial state of a node and
its inputs (and their exact interleaving) determine its outputs. We may also
expect φ(e) to be monotonic, since intuitively knowing more of the input cannot
remove information about the output. Furthermore, given a function φ(e) that
is not necessarily monotonic, we could define a new monotone function φ′(e) by

φ′(e)(f) = ∪f ′⊆fφ(e)(f ′)

Finally, we may expect that φ(e) distributes over intersections. This property
implies both φ(e)(T) = T and the monotonicity of φ(e)(T). We formulate it as
follows:

Condition 3 For all e ∈ E, for any index set X and family of frontiers fx for
x ∈ X, φ(e)(∩x∈Xfx) = ∩x∈Xφ(e)(fx).

12

In the remainder of this section, we present another way of looking at frontier
transformers. While φ(e) may be seen as going from inputs to outputs, the
alternative perspective is based on reasoning in the opposite direction, from
outputs to inputs. We show that the two perspectives yield equivalent results;
in our opinion, this equivalence makes frontier transformers (and Condition 3)
even more compelling.

Suppose that, for a node p and an outgoing edge e, we are given a function R0

from times to frontiers, with the property (informally) that knowing p’s inputs at
R0(t) suffices for knowing its outputs on e at t. This function induces a monotone
function R(t) = ∪t′≤tRo(t′), with the property that knowing p’s inputs at R(t)
suffices for knowing its outputs on e up to t, as the following condition asserts.

Condition 4 If g(p)(h) = (. . . , 〈. . . ei 7→µi . . .〉) and g(p)(h@R(t)) = (. . . , 〈. . .
ei 7→µ′i . . .〉) then µi@(Close↓({t})) = µ′i@(Close↓({t})).

Going forward, we prefer to work with R rather than R0, because we have
not set out the notation to work directly with R0, and because knowing the
output only at a time t and not at the times below t may sometimes be useless,
in particular in the context of differential computation [10]. The fact that R
is (or may be) generated from some function R0 is reflected in the following
monotonicity condition.

Condition 5 If t′ ≤ t then R(t′) ⊆ R(t).

Every function R induces a function φ(e), and conversely every function φ(e)
induces a function R, as follows. Let us write F for the function that maps R to
φ(e) and G for the function that goes in the opposite direction. For ρ : T → F
and ψ : F → F , we set:

F(ρ)(f) = {t | ρ(t) ⊆ f}

and
G(ψ)(t) = ∩{f | t ∈ ψ(f)}

We obtain that the conditions on φ(e) and those on R are exactly equivalent,
and that the functions F and G are anti-monotone and inverses of each other:

Proposition 9.

– If φ(e) = F(R) and R satisfies Conditions 4 and 5 then φ(e) satisfies Con-
ditions 1 and 3.

– Conversely, if R = G(φ(e)) and φ(e) satisfies Conditions 1 and 3 then R
satisfies Conditions 4 and 5.

Proposition 10.

– If φ(e)(f) ⊆ φ′(e)(f) for all f , then G(φ′(e))(t) ⊆ G(φ(e))(t) for all t.
– If R(t) ⊆ R′(t) for all t, then F(R′)(f) ⊆ F(R)(f) for all f .

13

Proposition 11.

– For all f , φ(e)(f) = F(G(φ(e)))(f).
– For all t, R(t) = G(F(R))(t).

The following example illustrates that Condition 3 is needed in order for us
to obtain φ(e)(f) = F(G(φ(e)))(f), as we do in Proposition 11. Distributivity
over finite intersections would not suffice.

Example 2. Suppose that the set of times T consists of the integers (including
the negative ones), and that φ(e)(f) = T if f 6= ∅ and φ(e)(∅) = ∅. Note that
φ(e) distributes over all finite intersections but not over all infinite intersections.
We obtain that G(φ(e))(t) = ∩{f | t ∈ φ(e)(f)} = ∅, since t ∈ φ(e)(f) for
all non-empty f , but the intersection of all non-empty f is empty. Further, we
obtain that F(G(φ(e)))(f) = {t | G(φ(e))(t) ⊆ f} = {t | ∅ ⊆ f} = T , for all f .
In sum, F(G(φ(e))) is strictly bigger than φ(e) in this example.

From a semantics perspective, a frontier is a predicate, and a frontier trans-
former φ(e) is a predicate transformer. Curiously, our predicate transformers go
from inputs to outputs; generally the opposite is true. Nevertheless, much of the
material in this section is part of the general theory of predicate transformers
(e.g. [12, p. 83]), not specific to our setting. An exception is the correspondence
between Conditions 1 and 4, in Proposition 9.

5 Main results

In this section we present our main results. We start with an informal discussion
of the results which leads to a few definitions, continue with some auxiliary
lemmas, then state our main theorem.

Throughout, we assume a function φ that satisfies Condition 1. This condition
is purely local: it refers to the behavior of each node in isolation. In this section,
we use it in order to obtain global guarantees for an entire system.

5.1 Informal discussion and definitions

Our main theorem considers the messages that each node p receives within a
frontier D(p), possibly a different frontier for each node. Initially, however, let
us consider the simple case in which T = {“Public”, “Secret”}, with “Public” ≤
“Secret”, and D(p) = {“Public”} for all p. In this case, we can derive that each
node’s history is independent of any secrets, even if queues may contain secrets
initially and even if nodes can generate secrets in response to public messages.

More precisely, suppose that σ = 〈〈s0, s1, . . .〉〉 is a behavior of the system
with initial values for the queues Q0. Suppose further that HQ0 is such that
HQ0(e)@{“Public”} = Q0(e)@{“Public”} for all e, that is, that Q0 and HQ0

coincide on public messages. Then there exists an alternative behavior σ̂ =
〈〈ŝ0, ŝ1, . . .〉〉 with initial values HQ0 such that, if p has respective histories h and

14

ĥ in two corresponding states si and ŝi, then h@{“Public”} = ĥ@{“Public”}. In
this alternative behavior, each node has no information about messages outside
“Public”, not even that they exist at all.

Recall that, in Section 2, the definition of the action MessR says that, given
a sequence of messages u·m·v, a node p is allowed to process m when there is
no message n ahead of m (so, in u) with time(n) ≤ time(m). Although moti-
vated by other applications, this specification of MessR seems attractive from an
information-flow perspective. It enables a system to produce the same behavior
at time(m) independently of data at higher and unrelated levels. For example,
given the queue n·m where time(n) = “Secret” and time(m) = “Public”, the
node p can process m as though n was not there.

Going beyond the special case where D is constant across nodes, we would
want that a node p gets no information about messages outside D(p) from mes-
sages in D(p). For this purpose, we would assume that Q0 and HQ0 coincide on
D(p) for edges going into p, and would reason that for every behavior σ with
Q0 there is an alternative behavior σ̂ with HQ0 that yields the same histories
filtered to D(p) at each node p. Thus, messages at D(p) are fixed, and those
outside D(p) differ between σ and σ̂.

However, not all possible mappings of nodes to frontiers constitute reason-
able values for D. For instance, suppose that D(p) = {“Public”}, D(q) =
{“Public”, “Secret”}, and p has sent some messages to q on a direct edge e
from p to q. Any secrets that p has sent to q will be apparent in q’s history, and
corresponding actions at p must be present in any alternative behavior. Such
examples suggest that, when there is an edge from p to q, perhaps we should
require that D(q) ⊆ D(p).

Still, this requirement is not quite satisfactory in that it does not consider the
dependence of p’s outputs on e on p’s inputs. Treating this dependence via the
function φ, we amend the requirement to D(q) ⊆ φ(e)(D(p)). Thus, the frontier
at q is included in the frontier determined on e by the frontier at p.

In sum, we arrive at the following definitions:

– We say that a function D from P to F is coherent if, whenever p, q ∈ P ,
e ∈ E, src(e) = p, and dst(e) = q, D(q) ⊆ φ(e)(D(p)).

– We say that two functions Q0 and HQ0 from E to M∗ are equivalent up
to D, and write Q0 ' HQ0, if for all q ∈ P and e ∈ E with q = dst(e),
Q0(e)@D(q) = HQ0(e)@D(q).

We have studied weaker but sound requirements in which we consider not
only the static graph topology but also what messages are actually sent. We
have also studied the possibility of D being state-dependent, as explained in
Section 6. In this paper we do not develop those more sophisticated variants, for
simplicity.

5.2 Lemmas

Our first auxiliary lemma relates g, local states, queues, and local histories.
It relies on definitions of properties InvLocH and InvQH, which it asserts are

15

invariants. Property InvLocH says that the local state of a node is the local
state obtained by applying g to its history. Property InvQH similarly relates the
contents of a queue Q(e) to what is obtained by applying g to the history of e’s
source. We do not quite have Πeg(p)(H(p)) = Q(e), however, for three reasons:

– the initial value of Q(e) must be added ahead of the result of applying g to
the history of e’s source, on the left of this equation;

– the messages that e’s destination has consumed, which are in its history,
must be added ahead of Q(e), on the right;

– finally, reorderings are possible, because of the definition of MessR, so we
should use a reordering relation rather than an equality.

We arrive at the following definitions and lemma:

– Let InvLocH be

∀p ∈ P.ΠLocg(p)(H(p)) = LocState(p)

– Let InvQH be:

∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
(Q0(e)·Πeg(p)(H(p))) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

– Let InvLocQH be the conjunction of InvLocH and InvQH.

Lemma 1. ISpec(Q0) implies InvLocQH.

Our second lemma is motivated by the definition of HQ in Section 5.3 below.
There, we consider a sequence of messages defined as a subtraction. The lemma
implies that the subtraction never resorts to the clause ∅ − m = ∅; in other
words, the sequence from which we are subtracting contains all the elements of
the sequence that we are subtracting, and with at least the same multiplicity.

Lemma 2. Assume that Q0 ' HQ0 and that D is coherent. Let p = src(e) and
q = dst(e). Let µ = HQ0(e)·Πeg(p)(H(p)@D(p)) and ν = 〈m | (e,m) ∈ H(q)〉.
Then ISpec(Q0) implies (µ·u− ν@D(q)) = (µ− ν@D(q))·u, for all u.

5.3 Main theorem

Our main theorem relies on a way of mapping one state to another state. Specif-
ically, given state functions LocState, Q, and H, we define new state functions
HLocState, HQ , and HH . We then show that if a behavior satisfies ISpec(Q0)
then the behavior induced by the mapping satisfies ISpec(HQ0).

As in other work with TLA (e.g., [8, Section 8.9.4]), we phrase the theorem
in terms of formulas and substitutions rather than in terms of behaviors. For
any expression Exp, we write Exp for the result of applying the substitution
[HLocState/LocState,HH /H,HQ/Q] to Exp.

16

We let:

HLocState(p) = ΠLocg(p)(H(p)@D(p))

HQ(e) = HQ0(e)·Πeg(p)(H(p)@D(p))− 〈m | (e,m) ∈ H(q)〉@D(q)

where p = src(e), q = dst(e)

HH (p) = H(p)@D(p)

According to these definitions, HLocState(p) is obtained by applying g(p), much
as in InvLocH, but filtering the history with D(p). Intuitively, HLocState(p) is
intended to be the local state that p would reach if it only saw messages with
times in D(p). Similarly HQ(e) aims to describe the contents of Q(e) in an
alternative reality in which the source of e would see only messages with times
in D(p) and the destination of e would only consume messages in D(q). Its
definition has many of the same ingredients as InvQH. Finally, HH (p) is simply
the part of p’s local history that is limited to messages with times in D(p).

We obtain:

Theorem 1. Assume that Q0 ' HQ0 and that D is coherent. Then ISpec(Q0)
implies ISpec(HQ0).

The following corollary reformulates the theorem in terms of a behavior σ
and an alternative behavior σ̂. It also considers the case where the local history
of some node p in σ contains only messages with times in D(p). The corollary
states that the node would have exactly the same history in the alternative
behavior σ̂. Thus, the history does not allow p to differentiate σ and σ̂.

Corollary 1. Assume that Q0 ' HQ0 and that D is coherent. For every be-
havior σ = 〈〈s0, s1, . . .〉〉 that satisfies ISpec(Q0) there exists a behavior σ̂ =
〈〈ŝ0, ŝ1, . . .〉〉 that satisfies ISpec(HQ0) and such that, for all p ∈ P , if H(p) has
the value h in si then it has the value h@D(p) in ŝi.

If in addition, for some p ∈ P , σ satisfies (H(p) = H(p)@D(p)), then H(p)
has the same sequence of values in σ and in σ̂.

While differences in models make precise comparisons difficult, the properties
that these results express resemble non-interference and its possibilistic variants,
such as restrictiveness [9, Section 2.2.2]. For instance, restrictiveness talks about
adding or deleting “high-level inputs” to a system trace; in our results, the change
from Q0 to HQ0 can essentially serve that purpose.

5.4 A small example

We close this section with an application of Theorem 1 and Corollary 1. It is a
trivial exercise, but illustrates how the results can be instantiated.

Consider a simple graph with nodes p0, p1, and p2, with edges e1 and e2 from
p0 to p1 and p2, respectively, plus an inert node q with an edge e0 from q to p0.

17

Initially, Q(e0) contains messages for two unrelated times t1 and t2 that represent
private data for two users U1 and U2 (as in Section 4.3); Q(e1) and Q(e2) are
initially empty. Suppose that p0 demultiplexes the payload of those messages,
applies to them a state-independent function, and strips the time information
which is not needed at p1 and p2. Formally, all of p0’s outputs are in a third,
unrelated time null.

We still have φ(e1)({t1}) = T and φ(e2)({t2}) = T , and we also have
φ(e1)({t2}) = ∅ and φ(e2)({t1}) = ∅. Since q has no incoming edges, we can
take φ(e0)(f) = T for all f .

Therefore, we can satisfy the coherence criterion for the function D by letting
D(q) = T , D(p0) = {t1}, D(p1) = T , and D(p2) = ∅. Suppose further that σ
is a behavior of the system with the given initial messages in Q(e0). Then,
according to Corollary 1, there exists another behavior σ̂ with the same initial
messages in Q(e0) at time t1 but arbitrary ones at time t2 (because D(p0) =
{t1}). Moreover, Q(e1) is initially empty in σ̂ (because D(p1) = T), but the
initial contents of Q(e2) are arbitrary (because D(p2) = ∅). It follows from
Corollary 1 that the local history at p1 is identical in σ and σ̂. In other words,
this local history does not allow p1 to infer anything about which messages at
time t2 are initially present on e0.

Some alternative choices of D also satisfy the coherence criterion but lead
to different results, in particular showing that, symmetrically, p2 cannot infer
anything about which messages at time t1 are initially present on e0.

6 Conclusion

In this paper, we study how a dataflow model of computation, timely dataflow,
can offer information-flow properties. The required enhancements include the use
of functions that express dependencies between inputs and outputs at each node.
They are consistent with the possibility that each node operates over a distinct
set of virtual times. We leave for further work the enforcement or checking of
those dependencies. In the context of Naiad, programming conventions have
sometimes been used for ensuring the expected properties of the could-result-in
relation; those could probably be extended and codified into information-flow
type systems or other static analyses. We also leave for further work the study
of declassification and of quantitative information-flow properties, which should
be helpful in applications. Although Naiad remains a research artifact, it is
already a substantial, efficient system on which non-trivial applications have
been developed, but not, to date, with consideration of security and privacy
properties. Beyond Naiad, more broadly, there seems to be growing interest in
mandatory access control, information-flow control, and their applications in
modern data-parallel systems (e.g., [13, 6]).

As mentioned in the Introduction, this work stems from a larger effort to
understand, improve, and apply timely dataflow. We close this paper with a
brief discussion of some of our recent and ongoing work, and how it relates to
security.

18

Section 2 is based on the original description of the timely dataflow model
of computation in the context of Naiad [11], and on another paper (in prepa-
ration) that studies the model in more generality and detail. In particular, the
model includes completion notifications, which tell a node when it will no longer
see messages for a given time, and which require a careful definition and analy-
sis of the could-result-in relation. Other features of the model include external
input and output channels. We omit these aspects of timely dataflow here, in
order to simplify the presentation of this paper, though we have considered their
information-flow aspects. Interestingly, completion notifications introduce flows
of information “at a distance” (not necessarily from neighbor to neighbor in a
dataflow graph), via the run-time system that tracks the progress of the compu-
tation and delivers those notifications.

A further paper (also in preparation) explores fault-tolerance in the timely
dataflow model. Over the years, connections between non-interference and fault-
tolerance have been identified (e.g., [16, 15, 14]); perhaps it is time to revisit
them. Much of the machinery that we present in this paper arose in our work
on fault-tolerance, in a more general, more dynamic form. In particular, there,
the function D that maps a node to a set of times is state-dependent, rather
than static. “Undo computing” [7], which restores system integrity after an in-
trusion by undoing changes made by an adversary while preserving legitimate
user actions, may be an intriguing area of application for this ongoing work.

Acknowledgments

We are grateful to our coauthors on work on Naiad for discussions that led to
this paper, and to Gordon Plotkin for pointing out the connection with predicate
transformers.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

2. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

3. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy. pp. 11–20 (1982)

4. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (Jul 1985)

5. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress. pp. 471–475 (1974)

6. Khan, S.M., Hamlen, K.W., Kantarcioglu, M.: Silver lining: Enforcing secure infor-
mation flow at the cloud edge. In: 2014 IEEE International Conference on Cloud
Engineering. pp. 37–46 (2014)

7. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using selec-
tive re-execution. In: 9th USENIX Symposium on Operating Systems Design and
Implementation. pp. 89–104 (2010)

19

8. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

9. McLean, J.: Security models. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering. Wiley & Sons (1994)

10. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differential dataflow. In: CIDR
2013, Sixth Biennial Conference on Innovative Data Systems Research (2013)

11. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a
timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles. pp. 439–455 (2013)

12. Plotkin, G.: Domains (1983), the so-called Pisa notes, available at http://

homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps.

13. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security
and privacy for MapReduce. In: Proceedings of the 7th USENIX Symposium on
Networked Systems Design and Implementation. pp. 297–312 (2010)

14. Rushby, J.: Partitioning for avionics architectures: Requirements, mechanisms, and
assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center (Jun 1999)

15. Simpson, A., Woodcock, J., Davies, J.: Safety through security. In: Proceedings of
the 9th International Workshop on Software Specification and Design. pp. 18–24.
IEEE Computer Society (1998)

16. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer
security. In: Proceedings of the 5th International Workshop on Software Specifica-
tion and Design. pp. 273–277. ACM (1989)

17. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation. pp. 15–28 (2012)

20

Appendix

This appendix contains proofs omitted in the body of the paper.

Proof of Proposition 1: By a trivial induction on h.

Proof of Proposition 2: The proof is by induction on the derivation of u ↪→ v.
The cases of reflexivity and transitivity are trivial. The base case

u·m1·m2·v ↪→u·m2·m1·v

breaks down into subcases depending on whether m1 and m2 are in f , but each
is trivial too, using that (u1·u2)@f = u1@f ·u2@f .

Proof of Proposition 3: By induction on the derivation of u ↪→ v. If u = v
this is obvious. If u ↪→ v follows by transitivity from u ↪→u1 ↪→ v then (u −
w) ↪→ (u1 − w) ↪→ (v − w), by induction hypothesis. If u·m1·m2·v ↪→u·m2·m1·v
with time(m1) 6≤ time(m2), then (u·m1·m2·v−w) ↪→ (u·m2·m1·v−w), possibly
by reflexivity if subtracting w removes m1 or m2.

Proof of Proposition 4: By Proposition 3, (u−v@f) ↪→ (v·w−v@f) = v\@f ·w.

Proof of Proposition 5: u@f = u′@f implies (u@f − v@f) = (u′@f − v@f),
and (u − v@f)@f = (u@f − v@f) and (u′ − v@f)@f = (u′@f − v@f) by the
distributivity of filtering over subtraction and the idempotence of filtering.

Proof of Proposition 6: The proof is by induction on the derivation of u ↪→u′.
The cases of reflexivity and transitivity are trivial. The base case

. . . ·m1·m2· . . . ↪→ . . . ·m2·m1· . . .

is also trivial when (the leftmost occurrence of) m is not m1 or m2. Otherwise,
if m = m1, the desired conclusion follows from the hypothesis that time(n) 6≤
time(m) for all n in v′; if m = m2, the desired conclusion follows from that
hypothesis plus time(m1) 6≤ time(m2), which is required for the reordering.

Proof of Proposition 7: Since time(m) ∈ f , u@f = u′@f , and m occurs in
u′, we have that m occurs in u as well. Let v be the prefix of u to the left of the
leftmost occurrence of m. Let v′′ be the prefix of u′ to the left of the leftmost
occurrence of m; it is a prefix of v′.

Since time(m) ∈ f and u@f = u′@f , v and v′′ may differ only by elements
with times not in f . None of those elements can have a time ≤ time(m), since
time(m) ∈ f and f is a frontier. Therefore, since time(n) 6≤ time(m) for all n in
v′, we obtain time(n) 6≤ time(m) for all n in v.

21

Proof of Proposition 8: Suppose that src(e) = p, (p, t1) (e, t2), and t2 ∈
φ(e)(f). By our assumption, there is a history h = h1·x for p that ends with an
event x at some time t′1 ≥ t1 that results in an output on e at a time t′2 ≤ t2. In
the setting of this paper, where the only events are messages, x has to be of the
form (d,m) for some m such that t1 ≤ time(m). Let µ be Πeg(p)(h), and µ1 be
Πeg(p)(h1). Because the output is at time t′2 ≤ t2, and t2 ∈ φ(e)(f), we have
t′2 ∈ φ(e)(f), so µ@φ(e)(f) 6= µ1@φ(e)(f). By Condition 1, we have µ@φ(e)(f) =
(Πeg(p)(h@f))@φ(e)(f) and µ1@φ(e)(f) = (Πeg(p)(h1@f))@φ(e)(f). If t1 were
not in f , then t′1 would not be in f either, and we have h@f = h1@f , so

(Πeg(p)(h@f))@φ(e)(f) = (Πeg(p)(h1@f))@φ(e)(f)

and by transitivity we would obtain that µ@φ(e)(f) = µ1@φ(e)(f), which is a
contradiction.

Proof of Proposition 9: We verify the requirements for φ(e)(f), thus defined,
as follows:

– φ(e)(f) is a frontier, because if R(t) ⊆ f and t′ ≤ t then R(t′) ⊆ f , by
Condition 5.

– Condition 1 says that if g(p)(h) = (. . . , N, 〈. . . e 7→µ . . .〉) and g(p)(h@f) =
(. . . , N ′, 〈. . . e7→µ′ . . .〉) then

µ@φ(e)(f) = µ′@φ(e)(f)

This equality means that µ@{t | R(t) ⊆ f} = µ′@{t | R(t) ⊆ f}. By
Condition 4, if g(p)(h@R(t)) = (. . . , N ′′, 〈. . . e7→µ′′ . . .〉) then

µ@(Close↓({t})) = µ′′@(Close↓({t}))

If R(t) ⊆ f , then h@R(t) = h@f@R(t), and hence

µ′@(Close↓({t})) = µ′′@(Close↓({t}))

also by Condition 4. Therefore, for every t such that R(t) ⊆ f , we have that

µ@(Close↓({t})) = µ′@(Close↓({t}))

It follows that µ@{t | R(t) ⊆ f} = µ′@{t | R(t) ⊆ f}, as desired.
– Condition 3 holds, because

∩x∈X{t | R(t) ⊆ fx} = {t | R(t) ⊆ ∩x∈Xfx}

since t is such that R(t) ⊆ fx for all x if and only if it is such that R(t) ⊆
∩x∈Xfx.

We verify the requirements for R:

– R(t) is a frontier because frontiers are closed under intersection.

22

– Condition 4 says that if g(p)(h) = (. . . , N, 〈. . . e7→µ . . .〉) and g(p)(h@R(t)) =
(. . . , N ′, 〈. . . e7→µ′ . . .〉) then

µ@(Close↓({t})) = µ′@(Close↓({t}))

This follows from:
• Condition 1, which says that if g(p)(h) = (. . . , N, 〈. . . e7→µ . . .〉) and
g(p)(h@R(t)) = (. . . , N ′, 〈. . . e7→µ′ . . .〉) then

µ@(φ(e)(R(t))) = µ′@(φ(e)(R(t)))

• the facts that Close↓({t}) ⊆ φ(e)(R(t)), because

φ(e)(R(t)) = φ(e)(∩{f | t ∈ φ(e)(f)}) = ∩{φ(e)(f) | t ∈ φ(e)(f)}

by Condition 3, so t ∈ φ(e)(R(t)), and that t ∈ φ(e)(R(t)) implies
Close↓({t}) ⊆ φ(e)(R(t)).

– Condition 5 says that if t′ ≤ t then R(t′) ⊆ R(t). This follows from the fact
that if t′ ≤ t then t ∈ φ(e)(f) implies t′ ∈ φ(e)(f).

Proof of Proposition 10: This is immediate from the form of the definitions.

Proof of Proposition 11: – Given φ(e), we first prove:

φ(e)(f) ⊆ F(G(φ(e)))(f)

Expanding the definitions, this is

φ(e)(f) ⊆ {t | G(φ(e))(t) ⊆ f}

in other words

φ(e)(f) ⊆ {t | ∩{f ′ | t ∈ φ(e)(f ′)} ⊆ f}

Suppose t ∈ φ(e)(f). Then ∩{f ′ | t ∈ φ(e)(f ′)} ⊆ f , so t ∈ {t | ∩{f ′ | t ∈
φ(e)(f ′)} ⊆ f}.
For the other direction, we would like to show that F(G(φ(e)))(f) ⊆ φ(e)(f),
that is,

{t | ∩{f ′ | t ∈ φ(e)(f ′)} ⊆ f} ⊆ φ(e)(f)

So, suppose t ∈ {t | ∩{f ′ | t ∈ φ(e)(f ′)} ⊆ f}, in order to show t ∈ φ(e)(f).
The assumption means

∩{f ′ | t ∈ φ(e)(f ′)} ⊆ f

By monotonicity (implied by Condition 3), we obtain

φ(e)(∩{f ′ | t ∈ φ(e)(f ′)}) ⊆ φ(e)(f)

23

that is (since φ(e) distributes over all intersections by Condition 3),

∩f ′|t∈φ(e)(f ′)φ(e)(f ′) ⊆ φ(e)(f)

So it suffices to show that t ∈ ∩f ′|t∈φ(e)(f ′)φ(e)(f ′). For this purpose, we
assume that f ′ is such that t ∈ φ(e)(f ′), and note that it trivially follows
that t ∈ φ(e)(f ′).

– Conversely, given R, we want:

R(t) = G(F(R))(t)

Expanding the definitions, this is

R(t) = ∩{f | t ∈ F(R)(f)}

in other words,
R(t) = ∩{f | t ∈ {t | R(t) ⊆ f}}

that is,
R(t) = ∩{f | R(t) ⊆ f}

Finally, ∩{f | R(t) ⊆ f} = R(t) since R(t) is the least frontier f such that
R(t) ⊆ f .

Proof of Lemma 1: We prove that InvLocQH holds in initial states and is pre-
served by steps of behaviors that satisfy ISpec(Q0), that is, of behaviors that
satisfy ISpec and that start in a state where Q = Q0.

InitProp implies that initially H(p) is a sequence of the form

〈〈LocState(p)〉〉

for all p ∈ P , and that Q(e) = Q0(e) for all e ∈ E. The definition of g then
yields the desired properties.

For showing that InvLocQH is preserved by steps, we treat the conjuncts
separately, using the first conjunct in the arguments for the second.

1. For showing that InvLocH is preserved by steps, suppose that

ΠLocg(p)(H(p)) = LocState(p)

for all p, in order to show that

ΠLocg(p)(H ′(p)) = LocState ′(p)

for a particular p. We consider MessR transitions.
– MessR at p implies H ′(p) = H(p)·(e,m); and ΠLocg(p)(H ′(p)) and

LocState ′(p) are both obtained from g(p)(H(p)) by applying g1(p) to
LocState(p) and (e,m), then taking the state component of the result.
MessR at other nodes q leaves H(p) and LocState(p) unchanged.

24

2. For showing that InvQH is preserved by steps, suppose that, for all p, q, and
e with src(e) = p and dst(e) = q, we have

(Q0(e)·Πeg(p)(H(p))) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

in order to show that

(Q0(e)·Πeg(p)(H ′(p))) ↪→ (〈m | (e,m) ∈ H ′(q)〉·Q′(e))

for particular p, q, and e. We consider MessR transitions.
– MessR at p implies H ′(p) = H(p)·(e0,m0). Let

µ = Πeg1(p)(LocState(p), (e0,m0))

Then Q′(e) = Q(e)·µ. Moreover H ′(q) = H(q) (by the assumption that
edge source and destination are always different), so

〈m | (e,m) ∈ H ′(q)〉 = 〈m | (e,m) ∈ H(q)〉

By InvLocH, LocState(p) = ΠLocg(p)(H(p)), so

(Πeg(p)(H ′(p))) = (Πeg(p)(H(p)))·µ

Moreover,

(Q0(e)·(Πeg(p)(H(p)))) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

by induction hypothesis, so

(Q0(e)·(Πeg(p)(H(p)))·µ) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))·µ

(Q0(e)·(Πeg(p)(H ′(p)))) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e)·µ)

and finally

(Q0(e)·(Πeg(p)(H ′(p)))) ↪→ (〈m | (e,m) ∈ H ′(q)〉·Q′(e))

MessR at q implies H ′(q) = H(q)·(e1,m1) and H ′(p) = H(p). If e1 6= e,
then Q′(e) = Q(e) and 〈m | (e,m) ∈ H ′(q)〉 = 〈m | (e,m) ∈ H(q)〉,
so we are done by induction hypothesis. If e1 = e, then there exist
u, v ∈ M∗ such that Q(e) = u·m1·v, Q′(e) = u·v, time(n) 6≤ time(m1)
for all n ∈ u, and H ′(q) = H(q)·(e,m1). Since H ′(p) = H(p), we have
g(p)(H ′(p)) = g(p)(H(p)). So,

(Q0(e)·Πeg(p)(H ′(p)))
= (Q0(e)·Πeg(p)(H(p)))
↪→ (〈m | (e,m) ∈ H(q)〉·Q(e)) by induction hypothesis
= (〈m | (e,m) ∈ H(q)〉·u·m1·v)
↪→ (〈m | (e,m) ∈ H(q)〉·m1·u·v)
= (〈m | (e,m) ∈ H(q)〉·m1·Q′(e))
= (〈m | (e,m) ∈ H ′(q)〉·Q′(e))

MessR elsewhere (not at p or q) does not affect H(p), H(q), or Q(e), so
the induction hypothesis immediately implies the desired conclusion.

25

Proof of Lemma 2: By Lemma 1, ISpec(Q0) implies that InvLocQH always
holds, and InvLocQH implies that

(Q0(e)·(Πeg(p)(H(p)))) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

that is,
(Q0(e)·(Πeg(p)(H(p)))) ↪→ ν·Q(e)

So Condition 1 and Proposition 2 imply that

(Q0(e)·(Πeg(p)(H(p)@D(p))))@φ(e)(D(p))
↪→

(ν·Q(e))@φ(e)(D(p))

and then by Propositions 1 and 2, since coherence implies D(q) ⊆ φ(e)(D(p)),

(Q0(e)·(Πeg(p)(H(p)@D(p))))@D(q)
↪→

(ν·Q(e))@D(q)

and since Q0 ' HQ0,

(HQ0(e)·(Πeg(p)(H(p)@D(p))))@D(q)
↪→

(ν·Q(e))@D(q)

that is,
µ@D(q) ↪→ ν@D(q)·Q(e)@D(q)

So µ@D(q) includes every element of ν@D(q), and with at least the same multi-
plicity. A fortiori µ does as well. It follows that µ·u−ν@D(q) = (µ−ν@D(q))·u,
for all u.

Proof of Theorem 1: We assume that Q0 ' HQ0 and that D is coherent. We
consider a behavior that satisfies ISpec(Q0) in order to establish that it also
satisfies ISpec(HQ0).

By Lemma 1, we have that the behavior satisfies the invariant InvLocQH.
Using this invariant, we check conditions on initial predicates and on the next-
state relation, as follows:

– InitProp ∧ ∀e ∈ E.Q(e) = Q0(e) implies InitProp ∧ ∀e ∈ E.Q(e) = HQ0(e).
We need: for all p ∈ P , HLocState(p) ∈ Initial(p), for all e ∈ E, HQ(e) ∈M∗,
for all p ∈ P , HH (p) = 〈〈HLocState(p)〉〉, and for all e ∈ E, HQ(e) = HQ0(e).
• For the first conjunct:

HLocState(p) is the first component of g(p)(H(p)@D(p)), which equals
g(p)(〈〈LocState(p)〉〉) since InitProp implies H(p) = 〈〈LocState(p)〉〉, and
g(p)(〈〈LocState(p)〉〉) = (LocState(p), . . .) by definition, so we obtain that
HLocState(p) = LocState(p).
Moreover, InitProp implies LocState(p) ∈ Initial(p).

26

• For the second and fourth conjuncts:
Similarly, for e ∈ E, HQ(e) = HQ0(e) since InitProp implies H(p) =
〈〈LocState(p)〉〉 and H(q) = 〈〈LocState(q)〉〉, where p = src(e) and q =
dst(e). Since HQ0(e) ∈M∗, we obtain that HQ(e) ∈M∗.

• For the third conjunct:
For p ∈ P , InitProp implies H(p) = 〈〈LocState(p)〉〉, so immediately
HH (p) = 〈〈LocState(p)〉〉.

– MessR and InvLocQH imply

MessR ∨ 〈LocState, Q,H〉′ = 〈LocState, Q,H〉

Consider a MessR step. For some p ∈ P , some e ∈ E, some m ∈M , u0, v0 ∈
M∗, we have p = dst(e), Q(e) = u0·m·v0, Q′(e) = u0·v0, time(n) 6≤ time(m)
for all n ∈ u0, H ′(p) = H(p)·(e,m), and LocState ′(p) and Q′(ei) (for ei such
that src(ei) = p) are updated by calculating g1(p)(LocState(p), (e,m)).
Let {e1, . . . , ek} = {d ∈ E | src(d) = p}, s = LocState(p), and

(s′, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, (e,m))

Then LocState ′(p) = s′ and Q′(e1) = Q(e1)·µ1, . . . , Q′(ek) = Q(ek)·µk.
Other state components are unchanged.
The proof is by cases on whether time(m) ∈ D(p).
Suppose first that time(m) ∈ D(p).
We wish to show that there exist u, v ∈ M∗ such that HQ(e) = u·m·v,
HQ ′(e) = u·v, and for all n in u, time(n) 6≤ time(m).
We have:

HQ(e) = µ− ν@D(p)

where p0 = src(e), µ = HQ0(e)·Πeg(p0)(H(p0)@D(p0)), and ν = 〈n |
(e, n) ∈ H(p)〉, and

HQ ′(e) = µ− ν′@D(p)

where µ is as above (because sources and destinations are distinct, and hence
H ′(p0) = H(p0)), and ν′ = 〈n | (e, n) ∈ H(p)·(e,m)〉.
Since D is coherent, time(m) ∈ φ(e)(D(p0)) follows from time(m) ∈ D(p),
and we also have that

〈n | (e, n) ∈ H(p)〉@D(p)
=

〈n | (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

so
HQ(e) = µ− 〈n | (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

Condition 1 implies that

µ@φ(e)(D(p0)) = (HQ0(e)·Πeg(p0)(H(p0)))@φ(e)(D(p0))

and hence, by Proposition 1,

µ@(φ(e)(D(p0))∩D(p)) = (HQ0(e)·Πeg(p0)(H(p0)))@(φ(e)(D(p0))∩D(p))

27

and hence

µ@(φ(e)(D(p0)) ∩D(p)) = (Q0(e)·Πeg(p0)(H(p0)))@(φ(e)(D(p0)) ∩D(p))

since Q0 ' HQ0. So, by Proposition 5,

HQ(e)@(φ(e)(D(p0)) ∩D(p))

=

[
Q0(e)·Πeg(p0)(H(p0))
−〈n | (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

]
@(φ(e)(D(p0)) ∩D(p))

For proving that time(n) 6≤ time(m) for all n to the left of (the leftmost
occurrence) of m in HQ(e), Proposition 7 implies that it suffices to establish
this property for

Q0(e)·Πeg(p0)(H(p0))− 〈n | (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

instead of HQ(e).
By InvQH,

Q0(e)·Πeg(p0)(H(p0)) ↪→〈n | (e, n) ∈ H(p)〉·Q(e)
= 〈n | (e, n) ∈ H(p)〉·u0·m·v0

So, by Proposition 4,

Q0(e)·Πeg(p0)(H(p0))− 〈n | (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))
↪→〈n | (e, n) ∈ H(p)〉\@(φ(e)(D(p0)) ∩D(p))·u0·m·v0

Since time(m) ∈ φ(e)(D(p0))∩D(p), and time(n) 6≤ time(m) for all n ∈ u0,
we obtain that time(n) 6≤ time(m) for all n to the left of (the leftmost
occurrence) of m in

〈n | (e, n) ∈ H(p)〉\@(φ(e)(D(p0)) ∩D(p))·u0·m·v0
and hence in

Q0(e)·Πeg(p0)(H(p0))− 〈n | (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

by Proposition 6, and hence also in HQ(e) by Proposition 7 as indicated
above.
We let the prefix of HQ(e), to the left of the leftmost occurrence of m, be
u; the suffix (to the right) be v.
Furthermore, we have:

HQ ′(e) = µ− ν′@D(p)
= µ− 〈n | (e, n) ∈ H(p)·(e,m)〉@D(p)
= µ− ν@D(p)·m
= (µ− ν@D(p))−m
= HQ(e)−m
= u·v

In this case (time(m) ∈ D(p)), we also need to show that if

(s′1, N1, 〈e1 7→ν1, . . . , ek 7→νk〉) = g1(p)(HLocState(p), (e,m))

then

28

• HLocState ′(p) = s′1:
We have that

HLocState ′(p) = ΠLocg(p)(H ′(p)@D(p))

= ΠLocg(p)((H(p)·(e,m))@D(p))

Since time(m) ∈ D(p), we also have that

(H(p)·(e,m))@D(p) = H(p)@D(p)·(e,m)

so HLocState ′(p) is obtained by applying g1(p) to ΠLocg(p)(H(p)@D(p)),
in other words to HLocState(p). So HLocState ′(p) = s′1.
• HQ ′(e1) = HQ(e1)·ν1, . . . , HQ ′(ek) = HQ(ek)·νk:

Suppose that dst(ei) = q. We have that

HQ ′(ei) = HQ0(ei)·Πeig(p)(H ′(p)@D(p))− 〈n | (ei, n) ∈ H ′(q)〉@D(q)

Simplifying (using in particular that time(m) ∈ D(p)), we obtain

HQ ′(ei) =
HQ0(ei)·Πeig(p)((H(p)@D(p))·(e,m))− 〈n | (ei, n) ∈ H(q)〉@D(q)

We also have that

HQ(ei) = HQ0(ei)·Πeig(p)(H(p)@D(p))− 〈n | (ei, n) ∈ H(q)〉@D(q)

Since HLocState(p) = ΠLocg(p)(H(p)@D(p)), Πeig(p)((H(p)@D(p))·(e,
m)) is obtained from Πeig(p)(H(p)@D(p)) by adding (concatenating as
a suffix) Πeig1(p)(HLocState(p), (e,m)), called νi above. Therefore, we
have:

HQ ′(ei)
= (HQ0(ei)·Πeig(p)(H(p)@D(p))·νi)− 〈n | (ei, n) ∈ H(q)〉@D(q)
= (HQ0(ei)·Πeig(p)(H(p)@D(p))− 〈n | (ei, n) ∈ H(q)〉@D(q))·νi
= HQ(ei)·νi

as desired. The second equality requires Lemma 2, which we can apply
since Q0 ' HQ0 and D is coherent.
• HH ′(p) = HH (p)·(e,m), since time(m) ∈ D(p), HH (p) = H(p)@D(p),

HH ′(p) = H ′(p)@D(p), and H ′(p) = H(p)·(e,m).
• All other state components are unchanged. This holds for HLocState(q)

and HH (q) for all q 6= p because H(q) does not change in this transition.
It also holds for HQ(d) for all d ∈ E − {e, e1, . . . , ek}:
∗ H ′(src(d)) = H(src(d)) (since d cannot be among e1, . . . , ek, so

src(d) 6= p);
∗ if dst(d) 6= p, then H ′(dst(d)) = H(dst(d));
∗ if dst(d) = p, then H ′(dst(d)) = H(dst(d))·(e,m), so 〈n | (d, n) ∈
H ′(p)〉 = 〈n | (d, n) ∈ H(p)〉, so H ′(dst(d)) and H(dst(d))·(e,m)
induce the same HQ ′(d).

29

Now suppose that time(m) 6∈ D(p). We argue that HLocState, HQ , and HH
are unchanged.
Since H(q)@D(q) = H ′(q)@D(q) in this case, for all q ∈ P including p, we
have that HLocState ′(q) = HLocState(q) and HH ′(q) = HH (q).
For d ∈ E, HQ ′(d) = HQ(d) follows H ′(p)@D(p) = (H(p)·(e,m))@D(p) =
H(p)@D(p) and H ′(q) = H(q) for all q 6= p.

Proof of Corollary 1: We assume that Q0 ' HQ0, that D is coherent, and
that σ = 〈〈s0, s1, . . .〉〉 satisfies ISpec(Q0), and construct the desired σ̂ as follows.
Let ŝi be the state that, for all p ∈ P and e ∈ E, maps LocState(p), Q(e), and
H(p) to the values of HLocState(p), HQ(e), and HH (p), respectively, in si. By
Theorem 1, σ satisfies ISpec(Q0), so σ̂ satisfies ISpec(HQ0). Moreover, by the
definition of HH , we have that if h is the value of H(p) in si, then h@D(p) is
the value of H(p) in ŝi.

Suppose further that p ∈ P and σ satisfies (H(p) = H(p)@D(p)). Then
H(p) has the same sequence of values in σ and in σ̂, since, in the notation
above, h = h@D(p).

30

