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Abstract

This thesis establishes a stochastic framework for tracking curves in vi-

sual clutter, using a Bayesian random-sampling algorithm. The approach

is rooted in ideas from statistics, control theory and computer vision. The

problem is to track outlines and features of foreground objects, modelled

as curves, as they move in substantial clutter, and to do it at, or close to,

video frame-rate. The algorithm, named Condensation, for Conditional

density propagation, has recently been derived independently by several

researchers, and is generating signi�cant interest in the statistics and sig-

nal processing communities. This thesis contributes to the literature on

Condensation-like �lters by presenting some novel applications of and ex-

tensions to the basic algorithm, and contributes to the visual motion estima-

tion literature by demonstrating high tracking performance in cluttered envi-

ronments. Despite its power the Condensation algorithm has a remarkably

simple form and this allows the use of non-linear motion models which com-

bine characteristics of discrete Hidden Markov Models with the continuous

Auto-Regressive Process motion models traditionally used in Kalman �lters.

These mixed discrete-continuous models have promising applications to the

emerging �eld of perception of action. This thesis also implements two al-

gorithms to smooth the output of the Condensation �lter which improves

the accuracy of motion estimation in a batch-mode procedure after tracking

is complete.
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1

Introduction and literature review

Over the last decade, visual motion analysis has emerged as one of the principal areas of

research within the computer vision community. The increasing interest is due in part to the

falling cost of computing power and, perhaps as important, the storage necessary to process

extended image sequences. A sequence of images collected at or near video rate typically

does not change radically from frame to frame, and this redundancy of information over

multiple images can be extremely helpful in disambiguating the visual input, whether to

track individual objects or to perform a more general motion segmentation. This should not

be surprising given the experience of human observers watching, for example a camou
aged

animal which cannot be seen against its background until it begins to move. The problem of

taking full advantage of the redundancy in an image sequence is challenging. Our approach

is to build probabilistic models to describe the likely motion and appearance of an object

of interest. Together with a sequence of input images, these models de�ne a probability

density function (p.d.f.) which encodes all the available information about the positions

and velocities of the object in the sequence. The remaining task is to design algorithms for

�ltering the input images in order to compute an approximation to this p.d.f.

The purpose of this thesis is to establish a stochastic framework for tracking curves in

visual clutter, using a sampling algorithm. The approach is rooted in ideas from statistics,

control theory and computer vision. The problem is to track outlines and features of

foreground objects, modelled as curves, as they move in substantial clutter, and to do it

at, or close to, video frame-rate. The algorithm developed here to address this tracking
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problem, called Condensation for Conditional density propagation, has recently been

derived independently by several researchers, and is generating signi�cant interest in the

statistics and signal processing communities. This thesis therefore aims both to contribute

to the literature on Condensation-like �lters, by presenting some novel applications and

extensions, and to contribute to the visual motion estimation literature by demonstrating

high tracking performance in cluttered environments. We also develop non-linear motion

models which are easily incorporated in the Condensation framework and have promising

applications to the emerging �eld of perception of action.

1.1 Overview

This chapter presents a brief review of literature relevant to this thesis. Visual tracking

papers from the computer vision community are covered as well as Bayesian statistical

methods for analysing single images and a variety of nonlinear �ltering approaches from

control theory, statistics and signal-processing.

Chapter 2 outlines an \active contour" framework for visual tracking and provides back-

ground detail on the methods used for representing curves using B-splines and learning

statistical models of shape and motion around these curve representations. There is also a

brief discussion of simple image-processing considerations.

Chapter 3 includes a more technical discussion of Bayesian nonlinear �ltering techniques

and then describes the random-sampling approach which we adopt, and sets out the Con-

densation algorithm to implement these ideas. The algorithm is described in its generality

and observation and motion models are outlined which allow the �lter to be tested on vi-

sual tracking problems in heavy clutter. A series of these experiments are then presented

in chapter 4.

Chapter 5 presents a more complex motion model which allows discrete switching be-

tween multiple simpler models. The simplicity of incorporating such a model in the Con-

densation algorithm is demonstrated, and the ideas are illustrated with experiments track-

ing a bouncing ball and a hand drawing with a pen.

Chapter 6 describes a modi�cation to the sampling scheme used in Condensation

which allows the �lter to take advantage of information from multiple measurement sources,

and demonstrates the applicability of the method using a hand-tracking application which

combines a simple colour-based blob-tracker with the contour models used in previous chap-
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ters. Due to the increased e�ciency of the sampling, the algorithm is able to run in real

time, and as a side-e�ect a re-initialisation procedure can be implemented, bringing the

hand-tracker close to a practical automatic system.

Chapter 7 presents algorithms to \smooth" the output of the Condensation algorithm,

performing a batch-mode procedure after tracking is complete which allows re�ned estimates

of the object's state to be computed in the light of later measurements. The smoothing

algorithms are applied to results from earlier chapters, showing increased accuracy of the

estimates.

Finally, in chapter 8 there is further discussion of points raised in earlier chapters, as well

as an outline of some promising areas of future research. A fuller analysis is also possible,

in the light of the preceding chapters, of related literature which describes work similar to

that presented in this thesis.

A web page at http://www.robots.ox.ac.uk/

~

misard/condensation.html describes

current research relating to the Condensation algorithm as well as showing MPEG movies

of tracking performance.

1.2 Visual tracking

Tracking has been studied extensively in the computer vision literature, both because of its

intrinsic interest and because of the large number of applications. For example, autonomous

robots may need to be able to follow objects in their environment (Reid and Murray, 1996;

Pahlavan et al., 1993; Davison and Murray, 1998; Murray et al., 1993; Espiau et al., 1992);

one commonly studied special case of this concerns autonomous guided vehicles for driving

on roads, which must track the features of the road (Dickmanns, 1992; Crisman, 1992) and

also other moving vehicles (Smith, 1995). Static systems may also be used to track vehicles,

either to collect tra�c data from highway scenes (Ferrier et al., 1994; Koller et al., 1994) or to

analyse complex environments such as airports (Sullivan, 1992). Tracking may also be used

in robot arm applications to capture multiple views of an object from a moving camera and

thus compute trajectories for exploring freespace (Blake et al., 1992) or to select an optimal

grasp to pick up the object (Taylor, 1995). There is increasing interest in using computer

vision to augment a computer's user-interface (Roy et al., 1997), including using lip-tracking

to aid speech recognition (Bregler and Omohundro, 1995; Hennecke et al., 1995; Petajan and

Graf, 1995). The digital desk paradigm (Wellner, 1991; Wellner, 1993) predicts a return of
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the desktop metaphor to physical reality, whereby the user's desk is replaced by a projection

screen and watched by a camera, and virtual documents can co-exist with real documents in

the workspace. Reliable hand-tracking is vital for this goal, and various systems have been

proposed for both tracking (Rehg and Kanade, 1994; Blake and Isard, 1994; Sullivan and

Blake, 1997) and gesture recognition (Freeman and Roth, 1995; Kjeldsen and Kender, 1996;

Cohen et al., 1996; Starner and Pentland, 1995; Yacoob and Black, 1998). Hand gestures

are a special case of the developing �eld of \perception of action" which attempts to use

tracking information to infer knowledge about a scene. This has roots in the tracking of

people (Hogg, 1983; Baumberg and Hogg, 1994; Baumberg and Hogg, 1995b; Fernyhough

et al., 1996; Yacoob and Black, 1998; Bregler, 1997; Haritaoglu et al., 1998; Bregler and

Malik, 1998) for surveillance applications, as well as creating arti�cial environments (Maes,

1993; Intille et al., 1997; Wren et al., 1997) which respond to human actions, for example

creating an interactive playroom for children (Intille et al., 1997). There is much current

interest in learning to classify the output of such trackers into behaviours, for example

(Starner and Pentland, 1995; Bobick and Wilson, 1995; Freeman and Roth, 1995; Kjeldsen

and Kender, 1996). General techniques for tracking, not tied to any particular application,

include the use of optic-
ow information, for example (Koenderink and van Doorn, 1975;

Horn and Schunk, 1981; Ju et al., 1996), rigid three-dimensional models (Harris, 1992;

Lowe, 1992) and contour outlines (Kass et al., 1987; Cootes et al., 1993; Blake and Isard,

1998). More details of some of these techniques are given in the sections which follow.

1.2.1 Low-level or image-based tracking

We use the term \low-level" to informally group tracking methods which use only very weak

assumptions about the object of interest in the image-processing stage. Generic features are

extracted from the image, and only then grouped or interpreted according to higher-level

knowledge about the scene. This contrasts with methods described in later sections which

make use of strong modelling constraints to guide even the lowest-level image-processing

stages. Recently a number of systems (Intille et al., 1997; Wren et al., 1997; Bregler, 1997;

Maes, 1993; Haritaoglu et al., 1998; Roy et al., 1997) have been developed which conform to

this notion of low-level tracking. Intille et al. (1997) construct a \blob-tracker" for real-time

tracking of people viewed from directly above in a room. They use background subtraction

to identify foreground regions, and then segment these regions into blobs based on colour.

The blobs are then clustered using a simple algorithm based on proximity and velocity, to
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identify a number of objects each of which is assumed to correspond to a single person.

This technique is fast but merges blobs when people come close to each other, and relies on

a top-down view and a fairly static background. Wren et al. (1997) build a system which

can track a single person viewed from a camera angle in front of and above the person.

They again isolate blobs using colour information, and then use prior information about

e.g. the colour of hands and faces and the topology of a person's body to interpret the

set of blobs as a �gure. The correspondence model associating blobs with arms, torso,

head, etc. is dynamically updated as blobs pass in and out of view to deal with occlusions.

Since the view is frontal, gestures such as pointing and bending over can be recognised, but

the blob representation precludes accurate �ne-scale location of, for example, the hand's

position. Bregler and Malik (1997) segment pixels into a set of blobs each represented

by a Gaussian probability distribution on the basis of optic 
ow-determined velocities and

colour. They use an expectation-maximisation (EM) algorithm in a hierarchical �ltering

framework, using a Kalman �lter to track each blob and initialise the EM iteration for

the next time-step. Finally they segment the sequence of blob parameters using a mixed

discrete-continuous model, combining auto-regressive processes and Hidden Markov Models,

similar to that developed in chapter 5 (although their mixed-state model is applied only

once tracking is complete). Other successful tracking methodologies which do not use an

explicit object model include the Hausdor�-distance tracker of Huttenlocher et al. (1993)

and systems which track point features in an image-stream and use geometric rigid-body

constraints to group sets of features into clusters belonging to the same object (Torr and

Murray, 1994; Costeira and Kanade, 1995; Torr, 1997).

1.2.2 Optic-
ow based tracking

Optic-
ow has long been used (Koenderink and van Doorn, 1975; Horn and Schunk, 1981;

Black and Anandan, 1993; Ju et al., 1996) as a way both to estimate dense motion �elds

over the entire visible region of an image sequence, e.g. (Black and Anandan, 1993; Ju

et al., 1996), and to segment areas of consistent 
ow into discrete objects, e.g. (Black and

Jepson, 1996; Weber and Malik, 1995). In order to solve the optic-
ow constraint equation

it is necessary to either apply regularisation, assuming change in motion is smooth over

an image region, or parameterise the motion in an entire region using a low-dimensional

model, for example an a�ne model. Black et al. have developed a series of robust methods

for determining optic 
ow (Black and Anandan, 1993; Jepson and Black, 1993; Black and
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Jepson, 1996; Black et al., 1997; Ju et al., 1996). The \skin and bones" model (Ju et al.,

1996) combines many of the techniques in their earlier papers to determine a dense motion

�eld as a tiling of the image. Each tile may contain multiple a�ne motions, and these

motions are robustly regularised across adjoining tiles to provide smooth motion informa-

tion even in regions with little texture. Bregler (1998) returns to the problem of tracking

people, with the aim of determining pose very accurately over image sequences. As in (Bre-

gler, 1997), described in the last section, body parts are represented by connected blobs

segmented using parameterised a�ne optic-
ow estimates, although now instead of using

Gaussian distributions for the blobs there is an explicit pixel-based probability mask allow-

ing blobs of arbitrary shape. The parameterised model is further constrained during the

estimation process in this work by a 3D model of the human skeleton, which is broken down

using twists and exponential maps to make computation locally simpler and permit tracking

with reasonable computational expense. Modern developments of correlation tracking em-

ploy similar techniques to parameterised optic-
ow estimation. For example the framework

adopted by Hager and Toyoma (1996) for correlation tracking of a rectangular image patch

undergoing a�ne deformations is closely related to parameterised optic-
ow based methods;

where optic-
ow methods estimate a�ne parameters of deformation between consecutive

images, the correlation tracker estimates parameters relative to an initial template image.

A very e�cient algorithm is presented in (Hager and Toyama, 1996) which transfers most

of the computation to an o�-line processing stage and allows a�ne correlation tracking to

proceed in real time.

1.2.3 Curve tracking

\Snakes" were introduced by Kass et al. (1987) to perform robust segmentation and region

tracking by modelling an object using outline contour information which is relatively insen-

sitive to lighting variations, and imposing smoothness constraints on the curvature of the

contour and the motion of the object. This is more general than modelling entire objects but

more clutter-resistant than applying signal-processing to low-level corners or edges. This

active contour idea has since been used and extended by many researchers, e.g. (Menet

et al., 1990; Cipolla and Blake, 1990; Cootes et al., 1993; Blake et al., 1993b; Blake and Is-

ard, 1994; Baumberg and Hogg, 1995b; Lanitis et al., 1995; Blake and Isard, 1998). Curves

can be represented in a state-space of B-spline coe�cients (Bartels et al., 1987; Menet et al.,

1990; Cipolla and Blake, 1990) and shape-space models (Cootes et al., 1993) can be used to



Chapter 1. Introduction and literature review 7

de�ne prior probability densities over curves and their motions (Terzopoulos and Metaxas,

1991; Blake et al., 1993b). Reasonable defaults can be chosen for those densities, however

it is obviously more satisfactory to measure or estimate them from data-sequences. Algo-

rithms to do this, assuming Gaussian densities, are known in the control-theory literature

(Goodwin and Sin, 1984) and have been applied in computer vision (Blake and Isard, 1994;

Baumberg and Hogg, 1995b). Blake and Isard have developed an active contour framework

(Blake and Isard, 1998) which is used in this thesis and is more fully described in chapter 2.

Contour models have also been extended to include deformable textured regions within the

contours (Ivins and Porrill, 1995; Bascle and Deriche, 1995; Lanitis et al., 1995; Sclaro� and

Isidoro, 1998; Cootes et al., 1998). A recent development is the use of level-set snakes (Para-

gios and Deriche, 1998) to replace traditional B-spline based snakes. An energy function is

de�ned over the image, and fast algorithms are used to track level sets of this function. An

advantage of the approach is that the topology of the level sets may change, although there

is no parametric representation of the object, so the problem addressed is more akin to

motion segmentation than tracking. Also, existing methods have only been applied where

background subtraction can be used, and have not been demonstrated in image clutter.

1.3 Kalman �lters and data-association

Spatio-temporal estimation, the tracking of shape and position over time, has been dealt

with thoroughly by Kalman �ltering, in the case in which the state's probability density

function (p.d.f.) p(X

t

jZ

t

) (where X

t

is the object state at time t and Z

t

= (Z

1

; : : : ;Z

t

) is

the measurement history to time t) can satisfactorily be modelled as Gaussian (Dickmanns

and Graefe, 1988; Harris, 1992; Gennery, 1992; Rehg and Kanade, 1994; Matthies et al.,

1989) and the Kalman �lter can be applied to image-curves (Terzopoulos and Szeliski, 1992;

Blake et al., 1993b). For the state density to remain Gaussian it is necessary that the prior,

process and measurement densities all be Gaussian also (in the usual case the measurement

and process noise are Gaussian and the update equations are linear, which results in a

Gaussian state density as required). Bar-Shalom and Fortmann (1988) describe a number

of standard extensions to the Kalman �lter for dealing with situations where non-Gaussian

densities may be encountered. The Extended Kalman Filter (EKF) is appropriate in the

case of a non-linear but unimodal process which can be well approximated over the length

of a single timestep by its local linearisation. The EKF has been used in visual tracking,
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e.g. (Harris, 1992; Jebara et al., 1998). In some cases an exact �lter may be derived even

in the case that the dynamics are non-linear, for example Maybank et al. (1996) construct

a �lter for tracking a car based on position and steering angle parameters. The introduc-

tion of clutter can cause the observation density to be highly non-Gaussian, by introducing

multiple modes corresponding to the clutter features. A multi-modal measurement density

necessarily induces multi-modality into the state density. The \Probabilistic Data Associ-

ation Filter" (PDAF) (Bar-Shalom and Fortmann, 1988) is designed for the case of image

clutter where the process is linear and Gaussian, and the observation density is a mixture

of Gaussians. The PDAF continues to use the standard Kalman �lter framework by ap-

proximating all the visible measurements, weighted by their predicted likelihoods, into a

single Gaussian-distributed feature, and so it continues to represent the state density as

a single Gaussian. When a multi-modal state density is required, one solution is to use a

mixture of Gaussians to represent p(X

t

jZ

t

). The \Joint PDAF" (JPDAF) (Bar-Shalom and

Fortmann, 1988) is an extension of the PDAF where in principle the state density is evalu-

ated exactly and represented as a mixture of Gaussians (Sorenson and Alspach, 1971). The

number of terms in the mixture increases exponentially, however, so pruning and merging of

hypotheses is required to run within a �xed computational bound. The particular form of

observation density for the active contour framework used in this thesis makes the JPDAF

impractical due to the very large number of terms in the observation density mixture and

this is discussed in chapter 3. A multi-modal process density, as used in chapter 5, also

results in the state density becoming multi-modal. The Interacting Multiple Model (IMM)

�lter (Blom and Bar-Shalom, 1988) is analagous to the JPDAF when it is the process rather

than (or as well as) the observation density which is multi-modal. Again, the number of

terms in the mixture for the state density increases exponentially and pruning must be

applied (Sorenson and Alspach, 1971).

An alternative solution to the problem of clutter is to try to label features as inliers

or outliers and thus avoid the problem of a multi-modal observation density by explicitly

discarding clutter features. In simple cases a validation gate (Bar-Shalom and Fortmann,

1988) and heuristics may be su�cient within a Kalman �lter to identify the correct features.

With discrete features such as points or corners combinatorial data-association methods can

be e�ective with clutter. The RANSAC algorithm (Fischler and Bolles, 1981) has been used

to classify point features as inliers or outliers based on geometric rigid-body constraints

(Torr and Murray, 1994; Costeira and Kanade, 1995; Torr, 1997; Reid and Murray, 1996).
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This approach has only been presented in the literature in the case that measurements

are represented as a set of point features, and it is not clear how the algorithm could be

practically applied when tracking curves (ignoring the special case where it is possible to

reliably �nd \distinguished points" (Zisserman et al., 1993) on the curve). The RANSAC

approach is also unappealing as a general solution to tracking in clutter since it lacks a

mechanism for temporal propagation of information. Lowe (1992) describes a system which

attempts to deal with cluttered measurements by searching the image for a set of features

which is consistent with an object model. A feature set is rejected if its deviation from the

model exceeds a threshold set according to the expected noise of the measurement process.

He uses tree searching with backtracking to �nd the set, but improves the e�ciency by �rst

considering those features which are closest to the predicted model position.

Finally, one very general approach to nonlinear �ltering must be mentioned. This is

simply to integrate the state evolution equations directly, using a suitable numerical repre-

sentation of the state density such as �nite elements. This in essence is what Bucy (1969)

proposed and more recently Hager (1990) investigated with respect to robotics applications.

It is usable in one or two dimensions but, complexity being exponential in the dimension, is

altogether infeasible for problems of dimension around 6{20, typical of the tracking problems

dealt with here.

1.4 Bayesian analysis of static images

A standard problem in statistical pattern recognition is to �nd a model parameterised by

X in a single image Z. The problem is usually framed in terms of �nding the maximum

likelihood value

^

X, or possibly several modes of the likelihood. It is the generalisation of

this problem to �nding the trajectory of an object in an image sequence which is the subject

of this thesis. The information of interest for the localisation of the object is expressed in

the posterior distribution p(XjZ), but in general it is di�cult to calculate p(XjZ) directly,

so Bayes' rule is applied;

p(XjZ) =

p(ZjX)p(X)

p(Z)

(1.1)

where p(Z) is a constant not dependent on X for a given image, and so can be neglected

in the case where only relative likelihoods need be considered. Now the problem is to

represent the distributions p(X) and p(ZjX), corresponding to the prior information about

the object con�guration, and the observation model respectively. Here the likelihood p(ZjX)
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is considered a function of X for �xed Z. These distributions can be estimated from real

data, or by assuming reasonable defaults and relationships. In the case that p(X) and

p(ZjX) are Gaussian, it is straightforward to estimate

^

X. Least-squares estimation gives

^

X as the output of a Wiener �lter (Gonzales and Wintz, 1987); p(XjZ) is also Gaussian

with mean

^

X, and there is in principle a closed form method of obtaining the variance

V (XjZ) which, with the mean, completely speci�es the distribution. In cases of interest,

however, Z may be the whole image or a complex set of features in the image, so while

p(X) may sometimes be approximated by a Gaussian, p(ZjX) is highly non-Gaussian, since

each partial coincidence of a region of Z with a hypothesised model X leads to a local

maximum of p(ZjX). These coincidences can be the result of image clutter, or even simply

of symmetries in the model. In general therefore p(XjZ) is not available in analytic form.

Geman and Geman (1984) consider the use of pixel based models for X, and set out

a theoretical framework which is often cited in later papers. Their model is based on the

assumption that di�erent areas of the image, to be classi�ed as distinct regions, have pixel

intensities chosen from di�erent Markov random �elds (MRFs). An instance of the model,

X, assigns each pixel to a given region, and p(X) and p(ZjX) therefore include a term for

each pixel in the image, encoding the probability that it is a sample from the requisite

MRF. They show that p(X) for an MRF is equivalent to a Gibbs distribution, and thus

can apply existing methods from mathematical physics to treat such distributions. They

apply two algorithms to the problem | the Metropolis algorithm (Metropolis et al., 1953)

to �nd the mean of the distribution, and a form of simulated annealing to compute the

mode. Both algorithms rely on iterative simulation, where small updates in the model are

made at each step, and over many iterations the set of realisations swept out approximates

the prior p(X). One disadvantage to the pixel based representation is that it does not take

into account any idea of an underlying true image which is being quantised by the imaging

hardware. In particular, the same image, viewed at a di�erent pixel resolution, would have

an entirely di�erent model.

Similar iterative simulation techniques, under the name of \factored sampling" have

been applied by Grenander et al. (1991) to �nd hands in noisy images. The factored

sampling approach is to approximate the posterior density p(XjZ) by a discrete set of

realisations from the prior p(X) weighted by the observation density p(ZjX) and this is

discussed more fully in section 3.3 on page 39. Rather than using a model prior based on a

Markov Random Field, however, they choose to encode in p(X) an idea of hand shape. The
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model space M which they use consists of a number of nodes connected by line segments.

The prior p(X) is a Markov chain on the angles between line segments and the lengths

of the segments, together with a Gaussian distribution on global translation, scale and

rotation. The Markov transition matrix is estimated from data of real hands chosen to

represent a spread of likely hand shapes. This model has a number of advantages over

pixel-based schemes; it is independent of the imaging process, and it allows a more elegant

representation of certain prior information, for example that an object boundary is simply

connected, than is possible using MRFs.

The iterative simulation techniques described are part of the Markov Chain Monte

Carlo (MCMC) family of algorithms which have been very widely used in statistical image

analysis, e.g. (Ripley and Sutherland, 1990; Storvik, 1994; Grenander and Miller, 1994;

Miller et al., 1995). They have proved very successful in exploring distributions over single

images, but have no natural extension to the recursive �ltering of time sequences.

1.5 Random sampling approaches to Bayesian �ltering

Bayesian approaches have also been applied to temporal sequences where information from

a series of measurements (in our case images) must be combined, along with a prior model

of object motion. A form of sequential Bayesian �ltering was �rst described by Handschin

and Mayne (1969; 1970) and Akashi and Kumamoto (1977). Handschin and Mayne address

the non-linear �ltering problem: given a known process model

X

t

= f(X

t�1

;w

t

; t) (1.2)

and observation model

Z

t

= g(X

t

; t) + v

t

(1.3)

where w

t

and v

t

are vectors of random noise, and a series of observations Z

T

, �nd the best

�ltered state estimate

^

X

T

= E [p(X

T

jZ

T

)]:

They approach the problem by generating a set of N randomly sampled sequences S

(n)

T

=

fs

(n)

1

; : : : ; s

(n)

T

g. A sequence S

(n)

T

is generated as follows: �rst sample from the prior distri-

bution p(X

1

) to �nd s

(n)

1

, then for t = 2 : : : T compute s

(n)

t

by sampling the noise model
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to generate w

(n)

t

and applying (1.2). The probability of a sequence p(S

(n)

T

jZ

T

) can then be

evaluated from

p(S

(n)

T

jZ

T

) =

T

Y

t=1

p(Z

t

js

(n)

t

)

where p(Z

t

js

(n)

t

) can be derived from (1.3). It is then possible to estimate the desired

expectation E [�] from

E [p(X

T

jZ

T

)] �

P

N

n=1

s

(n)

T

p(S

(n)

T

jZ

T

)

P

N

n=1

p(S

(n)

T

jZ

T

)

:

This approximation may however be expected to deteriorate rapidly as T becomes large,

for �xed N , indeed for processes with Gaussian noise one might expect to need to set

N /

p

T in order to maintain a given level of accuracy in estimates over long sequences.

The \control variate method" is proposed in (Handschin and Mayne, 1969; Handschin,

1970) to reduce the variance of estimates in the case that the system in (1.2) and (1.3) can

be well-approximated using an Extended Kalman Filter. In that case a modi�ed �lter is

derived where random sampling is used to compute only the deviations of the model from

the EKF estimates found analytically. Akashi and Kumamoto (1977) propose essentially

the same sequential Bayesian algorithm, but apply it to the speci�c problem of estimation in

switching environments, where the system noise characteristics are assumed to be governed

by a Markov process.

The problem of unbounded growth of the sample-set size N can be addressed by re-

sampling the random sequences at each timestep according to the observation density.

Resampling in the context of static probability distributions is described by Rubin (1988)

where he calls it the \Sampling Importance Resampling" (SIR) algorithm, and performed

in a Bayesian context as a weighted bootstrap by Smith and Gelfand (1992). The extension

of the resampling idea to the recursive �ltering of time series data was recently indepen-

dently discovered by several researchers (Gordon et al., 1993; Kitagawa, 1996; Isard and

Blake, 1996). The algorithm to do this in the context of computer vision, which we denote

Condensation (Isard and Blake, 1996; Isard and Blake, 1998a) for Conditional density

propagation, is the focus of this thesis and is fully set out in chapter 3. There has been

signi�cant interest generated by these �ltering methods both in the statistics and signal

processing (Gordon et al., 1993; Gordon and Salmond, 1995; Kitagawa, 1996; Carpenter

et al., 1997; Pitt and Shepherd, 1997; Doucet, 1998) and computer vision (Isard and Blake,
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1996; Isard and Blake, 1998a; Isard and Blake, 1998c; Heap and Hogg, 1998; Isard and

Blake, 1998b; Isard and Blake, 1998d; Black and Jepson, 1998) communities (chapters 3{7

contain material originally published as (Isard and Blake, 1998a; Isard and Blake, 1998c;

Isard and Blake, 1998d; Isard and Blake, 1998b)). Gordon (1993; 1995) describes the al-

gorithm, which he calls the \bootstrap �lter" after the weighted bootstrap of (Smith and

Gelfand, 1992), and applies it to the traditional �ltering problem of bearings-only tracking.

He describes some ad-hoc techniques to improve the e�ciency of the sampling scheme, a

discussion of which is deferred until section 8.3 on page 130 by which time the relevance to

the work in this thesis will be clearer. The work described in (Carpenter et al., 1997; Pitt

and Shepherd, 1997) will also be considered in section 8.3, for the same reasons. Kitagawa

(1996) refers to the algorithm as a \Monte-Carlo �lter" and his formulation is valid only

for the special case that observations are one-dimensional. He also describes two smooth-

ing algorithms which are reimplemented in the Condensation framework in chapter 7.

Doucet (1998) surveys a number of sequential sampling approaches, and interprets them

as special cases of a general sequential importance sampling framework, which again will

be considered in chapter 8. The Condensation algorithm described in this thesis di�ers

from (Gordon et al., 1993; Kitagawa, 1996; Carpenter et al., 1997; Pitt and Shepherd, 1997)

largely in the form of the observation density. The algorithm is applied here to cluttered

images, which we model using a mixture of a very large number of component distributions.

The applications described in (Gordon et al., 1993; Kitagawa, 1996; Carpenter et al., 1997;

Pitt and Shepherd, 1997) all use low-dimensional observation processes (e.g. bearings-only

tracking, �nancial modelling using the Black-Scholes equation and biological population

data) which can be modelled using comparatively simple mixture distributions. In some

cases, given a tractable observation model, it is possible to take advantage of the form of

the observations to improve the e�ciency of the algorithm (Carpenter et al., 1997; Pitt and

Shepherd, 1997; Doucet, 1998) and this is discussed in chapter 8, however it is not directly

relevant to the research in this thesis, due to the complexity of the observation model used

here.

Heap and Hogg (1998) describe an extension to Condensation which is a special case

of the mixed-model framework described in chapter 5. They represent hand outlines using

a high-dimensional linear state-space, where realistic hand-shapes are a highly non-linear

subset of the possible linear deformations, and are represented as a set of clusters in the

high-dimensional space. A Hidden Markov Model is used to \jump" between clusters and
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so track across discontinuities in the linear representation when, for example, the splayed

�ngers of the hand come together and the contours between individual �ngers disappear.

Black and Jepson (1998) also describe work related to chapter 5. They address the problem

of classifying gestures tracked using an optic-
ow based system. Distinct gestures are repre-

sented using trajectory models, and the problem is to �nd the best match of a test sequence

to the available trajectories, suitably scaled and translated. A mixed-state Condensation

tracker is run on the test data where each distinct trajectory corresponds to a discrete state

of the motion model and the continuous state-space vector X

t

describes instantaneous scale

and phase parameters of the model; the MAP trajectory is then estimated from the discrete

label of the mixed-state tracker.



2

A B-spline framework for curve

tracking

This chapter outlines a probabilistic \active contour" framework for visual tracking where

objects are represented by B-spline curves in an image-stream. This framework was devel-

oped by Blake and a number of collaborators (Curwen, 1993; Blake et al., 1993a; Blake

et al., 1995; Reynard et al., 1996; Rowe, 1996; Wildenberg, 1997; Kaucic, 1997; North and

Blake, 1998) and is fully set out in (Blake and Isard, 1998). The shape and motion models

used are very similar to those adopted by Cootes et al. (1994) and Baumberg and Hogg

(1995b; 1995a). While the Condensation algorithm and its extensions, presented in chap-

ters 3, 5 and 6, apply generally to a large class of shape and motion models, the experiments

presented in this thesis make use of the B-spline curve and auto-regressive process models

which follow, with some small alterations described in later chapters.

2.1 Linear parameterisations of splines for tracking

Objects are modelled as a curve (or set of curves), typically though not necessarily the

occluding contour, and represented at time t by a parameterised image curve r(s; t). The

parameterisation is in terms of B-splines, so

r(s; t) = (B(s) �Q

x

(t); B(s) �Q

y

(t)) for 0 � s � L (2.1)

where B(s) is a vector (B

0

(s); : : : ; B

N

B

�1

(s))

T

of B-spline basis functions, Q

x

and Q

y

are

vectors of B-spline control point coordinates and L is the number of spans. For notational
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simplicity the B-spline control points can be combined in a spline-vector

Q =

�

Q

x

Q

y

�

:

The general rule for computing B-spline basis functions in the case of multiple knots, which

allow for sharp corners and breaks in the curve, is too complex to express here but is fully set

out in (Blake and Isard, 1998). In the case of a closed quadratic B-spline with no multiple

knots, B

0

(s) is given by

B

0

(s) =

8

>

>

<

>

>

:

s

2

=2 if 0 � s < 1

3

4

� (s�

3

2

)

2

if 1 � s < 2

(s� 3)

2

=2 if 2 � s < 3

0 otherwise

and the others are simply translated copies:

B

n

(s) = B

0

(s� n)

where s is treated as periodic over the interval 0 � s � L.

In practice, it is desirable to distinguish between the spline-vector Q that describes the

basic shape of an object and the shape-vector which we denote x 2 M, where M is a

shape-space. WhereasM

Q

is a vector space of B-splines and has dimension N

Q

= 2N

B

, the

shape-space M

X

is constructed from an underlying vector space of dimension N

X

which is

typically considerably smaller than N

Q

. The shape-space is a linear parameterisation of the

set of allowed deformations of a base curve. The necessity for the distinction is made clear

in �gure 2.1. To obtain a spline that does justice to the geometric complexity of the face

shape, thirteen control points have been used. However, if all of the resulting 26 degrees of

freedom of the spline-vector Q are manipulated arbitrarily, many uninteresting shapes are

generated that are not at all reminiscent of faces. Restricting the displacements of control

points to a lower-dimensional shape-space is more meaningful if it preserves the face-like

quality of the shape. Conversely, using the unconstrained control-vector Q leads to unstable

active contours and this is illustrated in �gure 2.2.

The requirement that a shape-space be a linear parameterisation is made for the sake of

computational simplicity in a Kalman �ltering framework. Linearly parameterised, image-

based models work well for rigid objects, and for simpler non-rigid ones. The experiments

described in chapter 3 inherit this linear shape-space framework, but the Condensation

algorithm supports non-linear shape-spaces as naturally as linear ones, and in chapter 6
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modifying the configuration vector

arbitrary displacement
of control vector Q

X
(translate-rotate-scale in this example)

control point

Figure 2.1: Con�guration vector. Arbitrary manipulation of the spline-vector Q of a

spline curve is too general to be practically interesting. In this example a face curve ceases

to look face-like. What is far more interesting is a restricted class M of transformations,

parameterised by a relatively low-dimensional con�guration vector x. In this case x is a

Euclidean similarity transformation which does retain the face-like character.

a hand-tracker is implemented using a simple non-linear parameterisation of Euclidean

similarity transformations. It is expected that complex articulated bodies will best be

modelled using a non-linear parameterisation, perhaps similar to that used by Rehg (1994)

for tracking an articulated hand using an Extended Kalman Filter or Bregler's full-body

tracking using twists and exponential maps (Bregler and Malik, 1998).

A shape-space M = L(W;Q

0

) is a linear mapping of a shape-space vector x 2 R

N

X

to

a spline-vector Q 2 R

N

Q

:

Q =Wx+Q

0

; (2.2)

where W is an N

Q

� N

X

\shape-matrix." The constant o�set Q

0

is a template curve

against which shape variations are measured; for instance, a class of shapes consisting of

Q

0

and curves close to Q

0

could be expressed by restricting the shape-space M to \small"

x. For a planar shape just six a�ne degrees of freedom are required to describe, to a good

approximation, the possible shapes of its bounding curve. The planar a�ne group can be
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Figure 2.2: The need for shape-spaces. The white curve is a B-spline with su�cient

control points to do justice to the complexity of the leaf's shape. Control point positions

vary over time in order to track the leaf outline. However, if the curve momentarily loses

lock on the outline it rapidly becomes too tangled to be able to recover. (Figure by courtesy

of R. Curwen.)

viewed as the class of all linear transformations that can be applied to a template curve

r

0

(s):

r(s) = u+Mr

0

(s); (2.3)

where u = (u

1

; u

2

)

T

is a two-dimensional translation vector and M is a 2 � 2 matrix, so

that M;u between them represent the 6 degrees of freedom of the space. This class can be

represented as a shape-space with template Q

0

and shape-matrix:

W =

�

1 0 Q

x

0

0 0 Q

y

0

0 1 0 Q

y

0

Q

x

0

0

�

(2.4)

where 1 = (1 1 : : : 1)

T

and 0 = (0 0 : : : 0)

T

are vectors each withN

B

components. The �rst

two columns ofW represent horizontal and vertical translation. By convention, the template
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r

0

(s) represented by Q

0

is chosen with its centroid at the origin. Then the remaining four

a�ne motions (�gure 2.3), which do not correspond one-for-one to the last four columns

of W , can be expressed as simple linear combinations of those columns. Recall that the

shape-space transformation is Q =Wx+Q

0

so that the elements of x act as weights on the

columns of W . The interpretation of those weights in terms of planar transformations (2.3)

of the template is:

x = (u

1

; u

2

;M

11

� 1;M

22

� 1;M

21

;M

12

)

T

: (2.5)

Some examples of transformations are:

1. x = (0; 0; 0; 0; 0; 0)

T

represents the original template shape Q

0

2. x = (1; 0; 0; 0; 0; 0)

T

represents the template translated 1 unit to the right,

3. x = (0; 0; 1; 1; 0; 0)

T

represents the template doubled in size

4. x = (0; 0; cos � � 1; cos � � 1;� sin �; sin �)

T

represents the template rotated through

angle �

5. x = (0; 0; 1; 0; 0; 0)

T

represents the template doubled in width

In practice it is convenient to arrange for the elements of the a�ne basis to have similar

magnitudes to improve numerical stability. If the control-vector Q

0

is expressed in pixels,

for computational simplicity, the magnitudes of the last four columns of the shape-matrix

may be several hundred times larger than those of the �rst two, and it is then necessary to

scale the translation columns to match.

2.2 Key-frames

A�ne spaces are appropriate for modelling the appearance of three-dimensional rigid body

motion. In many applications, motion is decidedly non-rigid. A simple methodology to deal

with this situation is to use \key-frames" or representative image outlines of the moving

shape. Often, an e�ective shape-space can be built by linear combination of such key-

frames. The next section describes a statistical modelling approach to learn a shape-space

from a training set of sample motion.

Figure 2.4 shows a sequence of three frames which can be used to build a simple shape-

space in which the �rst frameQ

0

acts as the template and the shape-matrixW is constructed
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translate horizontally translate vertically

rotate scale horizontally

scale vertically scale diagonally

Figure 2.3: Planar a�ne basis. The planar a�ne transformation group has 6 degrees

of freedom and a basis for them is depicted here. The �rst three elements of the basis

correspond to translation and rotation of a rigid template. The last three elements span a

subspace that includes magni�cation of the template and two further degrees of freedom for

directional scaling. Directional scaling occurs when a planar object, initially co-planar with

the image, is allowed to rotate about an axis that lies parallel to the image plane.
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from the two key-frames Q

0

1

;Q

0

2

:

W =

�

Q

x

1

Q

x

2

Q

y

1

Q

y

2

�

: (2.6)

where Q

i

= Q

0

i

� Q

0

. This two-dimensional shape-space is su�cient to span all linear

Template Q

0

Key-frame: opening Q

1

Key-frame: protrusion Q

2

Figure 2.4: Key-frames. Lips template followed by two key-frames, representing interac-

tively tracked lips in characteristic positions. The key-frames are combined linearly with

appropriate rigid degrees of freedom, to give a shape-space suitable for use in a tracker for

non-rigid motion.

combinations of the three frames. What is more, the shape-space coordinates have clear

interpretations, for example:

� x = (0; 0)

T

represents the closed mouth;

� x = (1=2; 0)

T

represents the half-open mouth;

� x = (1=4; 1=2)

T

represents the mouth, half-protruding and slightly open.

The same three frames can be used to build a larger shape-space that allows for translation,

zooming and rotation of any of the expressions from the simple two-dimensional shape-

space; this and more general methods for analytically constructing shape-spaces, for example

permitting articulated objects, are described in (Blake and Isard, 1998).
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2.3 Principal components analysis

When the number of available training outlines Q

1

; : : : ;Q

M

of an object is much larger

than the e�ective number of degrees of freedom of the object it is inappropriate to treat

them as independent key-frames as above spanning a shape space M. Instead they can

be used to determine a smaller shape-space M

0

= L(W

0

;Q

0

0

) � M, a subspace of M

with dimension N

0

X

, that spans, at least approximately, all of the shapes in the training

sequence. This idea was �rst introduced by Cootes and Taylor (1993), in the special case

of polygonal contour models, which they dubbed the \Point Distribution Model" or PDM.

Their approach, using classical principal components analysis (PCA), is not suitable for

spline-based curve representations, and so the following modi�cation (Blake et al., 1995)

is used to �nd principal components based on the L

2

norm in spline-space. Given a long

(M > N

X

) training sequence, solve:

min

W

0

;Q

0

0

;X

0

1

;:::;X

0

N

0

X

 

M

X

k=1

kQ

k

�Q

0

k

k

2

!

; (2.7)

where

Q

0

k

=W

0

X

0

k

+Q

0

0

and Q

k

=WX

k

+Q

0

:

The distance measure k � k is the L

2

-norm in spline-space (Blake et al., 1995), and the

solution to this problem gives Q

0

0

= Q, the mean of the training sequence, and W

0

is a

matrix whose columns are the �rst N

0

X

of the orthonormal eigenvectors of the matrix �U

where

� =

1

M

M

X

k=1

(Q

k

�Q)(Q

k

�Q)

T

;

U =

1

L

Z

L

0

U(s)

T

U(s) ds and

U(s) =

�

B(s)

T

0

0 B(s)

T

�

:

U is the metric matrix for B-spline curves (Blake et al., 1993a) and e�cient methods for

computing U are given in (Blake and Isard, 1998). The eigenvectors are taken in descending

order of their (necessarily positive) eigenvalues. The intuitive interpretation is that the

eigenvalues represent variance in the training set in the mutually orthogonal directions of

the eigenvectors; the �rst N

0

X

eigenvectors form a basis for the subspace of dimension N

0

X

that \explains" as much as possible of the variance in the training set.
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Results from the application of PCA to a lip-motion sequence are shown in �gure 2.5.

In this case the individual PCA components are not recognisable as particular expressions;

Figure 2.5: A sequence of tracked lip-motion outlines is used here in PCA. The �rst four

eigenvectors, illustrated here, capture over 95% of the variance in the data set. (Eigenvectors

are displayed here as displacements either side of the mean, with magnitude equal to their

standard deviation over the sequence.) (Figures by courtesy of Robert Kaucic.)

rather they are mixtures of expressions. It is when they are taken as a set that they are

meaningful, as a basis for the repertoire of commonly occurring deformations.

2.4 Image processing

The original implementations of active contours, or \snakes" (Kass et al., 1987), performed

image processing on the entire image, and used the resulting edge-map as an energy surface

across which the contour moved. For e�ciency, the deformable templates described in this

chapter are driven towards a distinguished feature curve r

f

(s) rather than over the entire

image landscape F that is used in the snake model. One way of doing this is to mark high

strength values on the feature maps and group them to form point sets to which spline

curves could be �tted. However, the wholesale application of �lters across entire images

is excessively computationally costly. At any given instant, an estimate is available of the

position of a tracked image-contour and this can be used to de�ne a \search-region," in

which the corresponding image feature is likely to lie. Image processing can then e�ectively

be restricted to this search region, as in �gure 2.6. The search region displayed in the �gure
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Figure 2.6: Search region. It is computationally e�cient to restrict image processing

operations to lie within a \region of interest" (dashed lines) either side of the currently

estimated contour position (solid line). Image processing operations are then performed

along certain lines passing through the estimated contour. In this example, the lines are

normals to the estimated curve, three of which are shown as arrowed white lines.

is formed there by sweeping normal vectors of a chosen length along the entire contour.

Features can then be detected by performing image �ltering along each of the sampled

normals, and this is very e�cient. If normals are constructed at points s = s

i

; i = 1; : : : ; N ,

along the curve r(s), this will give a sequence of sampled points r

f

(s

i

); i = 1; : : : ; N along the

feature curve r

f

(s). The s

i

can either be spaced evenly around the curve or concentrated

in regions where measurements are expected to be particularly informative. In general,

more than one feature will be found on each normal, particularly when tracking in clutter.

In the Kalman �ltering framework described in this chapter, heuristics are used to choose

one \favourite" feature, for example using the strongest feature response, possibly weighted

towards the predicted feature position. In later chapters all detected features are used

as measurements by the Condensation algorithm and this is described in section 3.6 on

page 46.

2.4.1 Linear scanning

In order to perform one-dimensional image processing, image intensity is sampled at regu-

larly spaced intervals along each image normal. An arbitrarily placed normal line generally
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intersects image pixels in an irregular fashion, as in �gure 2.7. This generates undesirable

Figure 2.7: Irregular image sampling. Listing the intensities of pixels crossed by a

normal line would result in a non-uniform sampling of intensity that would su�er abrupt

variations as the line moved over the image.

artifacts, and an e�ective sampling scheme, spatially regular and temporally smooth (when

the line moves) involves interpolation as follows. A sequence of regularly spaced sample

points are chosen along the line. The intensity I at a particular sample point (x; y) is com-

puted as a weighted sum of the intensities at 4 neighbouring pixels, as in �gure 2.8. A pixel

with centre sited at integer coordinates (i; j) has intensity I

i;j

. The intensity I at (x; y) is

then computed by bilinear interpolation:

I =

X

i;j

w

i;j

I

i;j

(2.8)

with weights

w

i;j

=

�

(1� jx� ij)(1� jy � jj) if jx� ij < 1 and jy � jj < 1

0 otherwise

(2.9)

so that at most four pixels, the ones whose centres are closest to (x; y), have non-zero

weights, as the �gure depicts.

2.4.2 Image �ltering

Analysis of image intensities now concentrates on the one-dimensional signals along normals.

The intensity I(x) along a particular normal is sampled regularly at x = x

i

and intensities
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i i+1

(x,y)
j

j+1

Figure 2.8: Interpolated image sampling. The intensity at a chosen sampling point

(x; y) is computed as a weighted sum of the intensities at the four immediately adjacent

pixels.

are stored in an array I

i

= I(x

i

); i = 1; : : : ; N . A variety of feature detection operators can

be applied to the line, typically edges, valleys or ridges. Features are located by applying an

appropriate operator or mask C

n

; �N

C

� n � N

C

, by discrete convolution, to the sampled

intensity signal I

n

; 1 � n � N

I

, to give a feature-strength signal

E

n

=

N

C

X

m=�N

C

C

m

I

n+m

:

Maxima of that signal are then located, and marked wherever the value at that maximum

exceeds a preset threshold (chosen to exclude spurious, noise-generated maxima). This is

illustrated for edges in �gure 2.9.

More sophisticated feature detection schemes can also be applied to normal lines, and

these include colour-based edge-detection and template matching, whereby typical greyscale

pro�les for foreground and background are learned. At each position on the normal line a

statistical likelihood can then be calculated that the feature point lies at that location. In

addition, when the camera is stationary it may be possible to employ background subtrac-

tion to reject spurious features which do not correspond to the foreground object. These

techniques are discussed more fully in (Blake and Isard, 1998).
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operator

-2 2

1

0

-1
0 97

x

intensity

edge
strength

0 97

threshold

Figure 2.9: Operator for edge detection The problem is to search along a line in an

image (top) to �nd edges | locations where contrast is high. An operator (left, shown on an

expanded length scale) is convolved with the image intensity function along the line (right).

One edge is found, corresponding to a maximum of the feature-strength function (bottom).
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2.5 Dynamical model

The active contour framework speci�es not only B-spline based shape models, but also

dynamical models characterising an object's behaviour over time. To simplify tracking using

a Kalman �lter, the dynamical models described in (Blake et al., 1993a; Blake et al., 1995;

Blake and Isard, 1998) are auto-regressive processes (ARPs), and the experiments described

in chapter 4 use these models directly. As is true for shape models, the Condensation

algorithm permits the use of a general class of non-linear, non-Gaussian motion models, and

chapter 5 introduces an extension to allow multiple ARP models with discrete switching

between them. The basic ARP framework is described in this section.

Object dynamics are modelled as a 2nd order process, represented in discrete time t as

a second-order ARP:

x

t

= A

2

x

t�2

+A

1

x

t�1

+D

0

+B

0

w

t

(2.10)

where w

t

are independent vectors of independent standard normal variables, D

0

is a �xed

o�set, and A

2

; A

1

and B

0

are matrices representing the deterministic and stochastic com-

ponents of the dynamical model. For notational simplicity an augmented state-vector X

t

can be used:

X

t

=

�

x

t�1

x

t

�

; (2.11)

and then

X

t

= AX

t�1

+D+Bw

t

(2.12)

where

A =

�

0 I

A

2

A

1

�

; D =

�

0

D

0

�

and B =

�

0

B

0

�

:

This notation also emphasises the Markov nature of the dynamical model, that X

t

depends

only on the state at the previous timestep X

t�1

.

In the case that the inverse of I�A is de�ned, D can be interpreted in terms of a mean

value X of the motion

X = (I �A)

�1

D (2.13)

so that (2.12) can be rewritten

X

t

�X = A(X

t�1

�X) +Bw

t

:
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The system is a set of damped oscillators, whose modes, natural frequencies and damping

constants are determined by A, driven by random accelerations coupled into the dynamics

via B from the noise term Bw. Default values for A, and B can be set by hand by specifying

oscillator parameters consisting of a damping constant �, a natural frequency f and a root-

mean-square average displacement � (Blake and Isard, 1998). These parameters can be

used to determine the (zero-mean) ARP model in one dimension

x

t

= a

2

x

t�2

+ a

1

x

t�1

+ b!

t

where !

t

is Gaussian noise drawn from N(0; 1), a

1

, a

2

and b are given by

a

2

= � exp(�2��); a

1

= 2 exp(���) cos(2�f�)

b = �

s

1� a

2

2

� a

2

1

� 2

a

2

a

2

1

1� a

2

and � is the time-step length in seconds. It is straightforward to generalise this to multi-

dimensional oscillators, and the shape-space can be partitioned to provide di�erent be-

haviour for e.g. translation and deformation (Blake and Isard, 1998). Often it is more

satisfactory and e�ective to estimate model parameters from input data taken while the

object performs typical motions and this learning is described in the next section.

2.5.1 Learning a dynamical model

Initially, a hand-built model is used in a tracker to follow a training sequence which must be

not too hard to track. This can be achieved by allowing only motions which are not too fast,

and limiting background clutter. Once a new dynamical model has been learned, it can be

used to build a more competent tracker, one that is speci�cally tuned to the sort of motions

it is expected to encounter. That can be used either to track the original training sequence

more accurately, or to track a new and more demanding training sequence, involving greater

agility of motion. The cycle of learning and tracking is described in �gure 2.10. Typically

two or three cycles su�ce to learn an e�ective dynamical model, and in practice a learned

shape model can also be re�ned during the process by gathering new training outlines if

there are some object poses in the training sequence which are poorly represented in the

original shape model.

The problem is to estimate the coe�cients A

1

, A

2

, D

0

and B

0

which best model the mo-

tion in a training sequence of shapes x

1

; : : : ;x

M

, gathered at the image sampling frequency.

A general algorithm to do this is described below.
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Shape-space

Hand-built
dynamics

Training sequence
slow, clutter-free

Fast test
sequences

Faster training
sequence

Infer dynamical
model

Iterate

Figure 2.10: Iterative learning of dynamics. The model acquired in one cycle of learning

is installed in a tracker to interpret the training sequence for the next cycle. The process is

initialised with hand-speci�ed dynamics.

The problem is expressed in terms of a \log-likelihood" function, de�ned up to an

additive constant by

L(x

1

; : : : ;x

M

jA

1

; A

2

; B

0

;D

0

) � log p(x

1

; : : : ;x

M

jA

1

; A

2

; B

0

;D

0

) + const

where, since the w

k

are independent,

p(x

1

; : : : ;x

k

jA

1

; A

2

; B

0

;D

0

) /

Y

k

p

B

0

w

k

(x

k

�A

2

x

k�2

�A

1

x

k�1

�D

0

)

so, using the fact that the p

B

0

w

k

(�) are standard multivariate normal distributions,

L(x

1

: : :x

M

jA

1

; A

2

; B

0

;D

0

) = (2.14)

�

1

2

M

X

k=3

�

�

B

�1

0

(x

k

�A

2

x

k�2

�A

1

x�D

0

)

�

�

2

� (M � 2) log detB

0

:

Minimising the log-likelihood L leads to the learning algorithm of �gure 2.11 which es-

timates the dynamical parameters A

2

, A

1

, D

0

and B (Blake et al., 1995; Wildenberg, 1997;

Blake and Isard, 1998). Note that the learning algorithm as presented treats estimated

shape-vectors x in a training sequence as if they were exact observations of the physical

process, rather than noisy estimates obtained from a visual tracker. In practice this of-

ten works quite well but can give incorrect results with highly periodic training motions,

and instead dynamics can be learned directly from the observations using expectation-

maximisation (EM) (North and Blake, 1998).
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Dynamical learning problem

Given a training set fx

1

; : : : ;x

M

g of shapes from an image sequence, learn the

parameters A

1

, A

2

, B

0

and D

0

for a second-order AR process that describes

the dynamics of the moving shape.

Algorithm

1. First, sums R

i

; i = 0; 1; 2 and auto-correlation coe�cients R

ij

and

R

0

ij

; i; j = 0; 1; 2 are computed:

R

i

=

M

X

k=3

x

k�i

; R

ij

=

M

X

k=3

x

k�i

x

T

k�j

; R

0

ij

= R

ij

�

1

M � 2

R

i

R

T

j

:

2. Estimated parameters

^

A

1

,

^

A

2

and

^

D

0

are given by

^

A

2

=

�

R

0

02

�R

0

01

R

0

�1

11

R

0
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��

R

0
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�R
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^
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1
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�

R

0

�

^

A

2

R

2

�

^

A

1

R

1

�

:

3. The covariance coe�cient B

0

is estimated as a matrix square root

^

B

0

=

p

^

C where

^

C =

1

M � 2

�

R

00

�

^

A

2

R

20

�

^

A

1

R

10

�

^

D

0

R

T

0

�

:

Figure 2.11: Algorithm for learning multi-variate dynamics.



3

The Condensation algorithm

This chapter sets out the basic framework used to represent and propagate conditional den-

sities. It also describes particular models used in initial experiments to test the performance

of the Condensation algorithm. Later chapters extend these models to permit analysis

of more complex motions, and consider modi�cations to the basic algorithm which improve

its e�ciency.

3.1 Temporal propagation of conditional densities

The Kalman �lter as a recursive linear estimator is a special case, applying only to Gaussian

densities, of a more general probability density propagation process. In continuous time this

can be described in terms of di�usion, governed by a \Fokker-Planck" equation (Astrom,

1970), in which the density for X

t

drifts and spreads under the action of a stochastic model

of its dynamics. In the simple Gaussian case, the di�usion is purely linear and the density

function evolves as a Gaussian pulse that translates, spreads and is reinforced, remaining

Gaussian throughout, as in �gure 3.1, a process that is described analytically and exactly

by the Kalman �lter. The random component of the dynamical model leads to spreading

| increasing uncertainty | while the deterministic component causes the density function

to drift bodily. The e�ect of an external observation z

t

is to superimpose a reactive e�ect

on the di�usion in which the density tends to peak in the vicinity of observations. In

clutter, there are typically several competing observations and these tend to encourage a

non-Gaussian state-density (�gure 3.2).



Chapter 3. The Condensation algorithm 33
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p(x)
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p(x)

x
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deterministic drift

stochastic diffusion

reactive effect of measurement

z

Figure 3.1: Kalman �lter as density propagation. In the case of Gaussian prior,

process and observation densities, and assuming linear dynamics, the propagation process

of �gure 3.2 reduces to a di�using Gaussian state density, represented completely by its

evolving (multivariate) mean and variance | precisely what a Kalman �lter computes.

The Condensation algorithm is designed to address this more general situation. It

has the striking property that, generality notwithstanding, it is a considerably simpler

algorithm than the Kalman �lter. Moreover, despite its use of random sampling which is

often thought to be computationally ine�cient, the Condensation algorithm runs in or

near real-time. This is because tracking over time maintains relatively tight distributions

for shape at successive time-steps, and particularly so given the availability of accurate,

learned models of shape and motion.

3.2 Discrete-time propagation of state density

For computational purposes, the propagation process described in section 3.1 must be set

out in terms of discrete time t. The state of the modelled object at time t is denoted X

t

and its history is X

t

= fX

1

; : : : ;X

t

g. Similarly the set of image features at time t is Z

t

with
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z2z1

Figure 3.2: Probability density propagation. Propagation is depicted here as it occurs

over a discrete time-step. There are three phases: drift due to the deterministic component

of object dynamics; di�usion due to the random component; reactive reinforcement due to

observations.

history Z

t

= fZ

1

; : : : ;Z

t

g. Note that no functional assumptions (linearity, Gaussianity,

unimodality) are made about densities in the general treatment, though particular choices

will be made in due course in order to demonstrate the approach.

3.2.1 Stochastic dynamics

A somewhat general assumption is made for the probabilistic framework that the object

dynamics form a temporal Markov chain so that

p(X

t

jX

t�1

) = p(X

t

jX

t�1

) (3.1)

| the new state is conditioned directly only on the immediately preceding state, indepen-

dent of the earlier history. This still allows quite general dynamics, including stochastic

di�erence equations of arbitrary order; we typically use second order models as described

in section 2.5 on page 28. The dynamics are entirely determined therefore by the form of
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the conditional density p(X

t

jX

t�1

). For instance,

p(x

t

jx

t�1

) / exp�

1

2

(x

t

� x

t�1

� 1)

2

represents a one-dimensional random walk (discrete di�usion) whose step length is a stan-

dard normal variate, superimposed on a rightward drift at unit speed. Of course, for realistic

problems, the state X is multi-dimensional and the density is more complex (and, in the

applications presented later, learned from training sequences).

3.2.2 Measurement

Observations Z

t

are assumed to be independent, both mutually and with respect to the

dynamical process. This is expressed probabilistically as follows:

p(Z

t�1

;X

t

jX

t�1

) = p(X

t

jX

t�1

)

t�1

Y

i=1

p(Z

i

jX

i

): (3.2)

Note that integrating over X

t

implies the mutual independence of observations conditional

on the X

i

:

p(Z

t

jX

t

) =

t

Y

i=1

p(Z

i

jX

i

): (3.3)

The observation process is therefore de�ned by specifying the conditional density p(Z

t

jX

t

)

at each time t, and later, in computational examples, we take this to be a time-independent

function p(ZjX). Su�ce it to say for now that, in clutter, the observation density is multi-

modal. Details will be given in section 3.6.

3.2.3 Propagation

Given a continuous-valued Markov chain with independent observations, the conditional

state-density at time t is de�ned by p(X

t

jZ

t

). This represents all information about the

state at time t that is deducible from the entire data-stream up to that time. The rule for

propagation of state density over time is:

p(X

t

jZ

t

) = k

t

p(Z

t

jX

t

)p(X

t

jZ

t�1

); (3.4)

where

p(X

t

jZ

t�1

) =

Z

X

t�1

p(X

t

jX

t�1

)p(X

t�1

jZ

t�1

) dX

t�1

(3.5)
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and k

t

is a normalisation constant that does not depend on X

t

. The validity of the rule is

proved in appendix A.1 on page 144.

The propagation rule (3.4) should be interpreted simply as the equivalent of the Bayes'

rule (3.6) for inferring posterior state density from data, for the time-varying case. The

e�ective prior p(X

t

jZ

t�1

) is actually a prediction taken from the posterior p(X

t�1

jZ

t�1

)

from the previous time-step, onto which is superimposed one time-step from the dynamical

model (Fokker-Planck drift plus di�usion as in �gure 3.2), which is expressed in (3.5).

Multiplication in (3.4) by the observation density p(Z

t

jX

t

) in the Bayesian manner then

applies the reactive e�ect expected from observations. When the observation density is

non-Gaussian, the evolving state density p(X

t

jZ

t

) is also generally non-Gaussian (although

experiments in this chapter use a Gaussian process density, chapter 5 introduces a non-

Gaussian form for the process as well). The problem now is how to apply a nonlinear �lter

to evaluate the state density over time, without incurring excessive computational load.

Inevitably this means approximating. A survey of the non-linear �ltering literature was

given in section 1.3 and the following section treats Kalman-�lter based solutions in more

detail.

3.2.4 Non-linear extensions to Kalman �ltering

There are four distinct probability distributions represented in a non-linear Bayesian �lter.

Three of them form part of the problem speci�cation and the fourth constitutes the solution.

The three speci�ed distributions are:

1. the prior density p(X) for the state X

2. the process density p(X

t

jX

t�1

) that describes the stochastic dynamics

3. the observation density p(Z

t

jX

t

)

and the �lter evolves over time to generate, as the solution at each time-step, the state-

density p(X

t

jZ

1

; : : : ;Z

t

). Only when all of the three speci�ed distributions are Gaussian is

the state-density also Gaussian. Otherwise, for non-Gaussian p(X

t

jZ

1

; : : : ;Z

t

), it is possible

to use one of a number of approximate �lters, depending on which of the speci�ed densities

it is that is non-Gaussian.
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Non-Gaussian prior density

The case that the prior density is non-Gaussian is the simplest to deal with provided only

that it can adequately be represented (or approximated) as an additive Gaussian mixture:

p

0

(X) =

M

X

m=1

w

(m)

G(X;�

(m)

; P

(m)

0

):

In that case, provided that other speci�ed densities are Gaussian, the state density can also

be represented as a corresponding mixture

p(X

t

jZ

t

) =

M

X

m=1

w

(m)

G(X

t

;�

(m)

t

; P

(m)

t

)

in which the means �

(m)

t

and variances P

(m)

t

vary over time but the weights w

(m)

are �xed.

Each of the M mixture components evolves as an independent Gaussian so that, in fact,

the state density is just a sum of densities from M independent linear Kalman �lters.

Non-Gaussian process density

Non-Gaussian state densities can arise from the nature of the process either because the

dynamics are driven by non-Gaussian process noise, or, more generally, because the de-

terministic dynamics are non-linear. One approach to �ltering is then to approximate the

dynamics by Taylor expansion as a linear process with time-varying coe�cients and proceed

as for linear Kalman �lters. This generates a Gaussian representation of the evolving state-

density which may be a good approximation depending on the nature of the non-linearity.

This is the basis of the \Extended Kalman Filter" (EKF) (Gelb, 1974; Bar-Shalom and

Fortmann, 1988). Alternatively, one can attempt a mixture representation, as earlier, but

now allowing the weights w

(m)

also to vary over time. Unfortunately, even allowing dynamic

re-weighting (Sorenson and Alspach, 1971) does not produce exact solutions for p(X

t

jZ

t

),

because the individual Gaussian components do not remain Gaussian over time. For exam-

ple, consider the case in which the process density p(X

t

jX

t�1

) is itself an additive mixture

of k > 1 Gaussian components. According to the Bayesian propagation equation (3.5) each

component of p(X

t

jZ

t

) splits into k separate components in the transition from time n to

time n+1; the total number of components in p(X

t

jZ

t

) grows exponentially as k

t

. Clearly

p(X

t

jZ

t

) must be approximated at each time-step to prune back the number of components

(Anderson and Moore, 1979) within some resource-limited bound M . E�ectively there are

Mk full Kalman �lters running at each time-step, each bringing the computational expense
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of a Riccati equation step to update its covariance estimate. Clearly the success of this

approach depends on how well the densities p(X

t

jZ

t

) and p(X

t

jX

t�1

) can be approximated

with a modest number Mk of components.

Non-Gaussian observation density

In the case of visual tracking in clutter, non-linearity of the tracking �lter arises because the

observation density p(Z

t

jX

t

) is non-Gaussian and, furthermore, is multi-modal so that it

cannot be well approximated by a single Gaussian. Each of the methods just mentioned for

handling non-Gaussian process density, the EKF and Gaussian mixtures, are relevant also to

non-Gaussian observation density but continue to have the same drawbacks. Note that, in

the case of Gaussian mixtures, the number of mixture components again proliferates at each

time-step of (3.4), albeit via a di�erent mechanism involving products of Gaussians rather

than convolutions. Even this assumes that the observation density can be approximated as

a mixture but in clutter this becomes rather ine�cient, requiring at least one component

per visible feature.

There is an additional class of techniques which applies to this case when the non-

Gaussian state density arises from clutter of a particular sort. In the simplest case, one

of a �nite set of measurements Z

t

= fz

t;1

; : : : ; z

t;k

g at time t is to be associated with the

state X

t

at time t, while the remaining k � 1 measurements are to be regarded as clutter.

Heuristic mechanisms such as the validation gate and the probabilistic data-association

�lter (PDAF) (Bar-Shalom and Fortmann, 1988) attempt to deal with the ambiguity of

association. Alternatively it can, in principle, be dealt with exactly by \multiple hypothesis

�ltering" but with computational cost that grows exponentially over time and which is

therefore ruled out in practice (pruning can be used to reduce computational cost, although

the �lter is then no longer exact. This approach is equivalent to using a Gaussian mixture

model as mentioned above). The \RANSAC" algorithm (Fischler and Bolles, 1981) deals

probabilistically with multiple observations but the observations have to be discrete, and

there is no mechanism for temporal propagation. More complex methods including the Joint

PDAF (JPDAF) (Bar-Shalom and Fortmann, 1988; Rao, 1992) address the more di�cult

problem of associating not simply single features but subsequences of Z

t

with the state.

However, these methods rely on the existence of discrete features. In contour tracking the

features are continuous curves and so are not naturally amenable to discrete association.
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3.3 Factored sampling

This section describes �rst the factored sampling algorithm dealing with non-Gaussian

observations in single images. Then factored sampling is extended in the following section

to deal with temporal image sequences.

As discussed in section 1.4 on page 9, given a single static image Z it is a standard

problem in the statistical literature to �nd an object parameterised as X with prior p(X).

The posterior density p(XjZ) represents all the knowledge about X that is deducible from

the data. It can be evaluated in principle by applying Bayes' rule (Papoulis, 1990) to obtain

p(XjZ) = kp(ZjX)p(X) (3.6)

where k is a normalisation constant that is independent of X. In cases where p(ZjX) is suf-

�ciently complex that p(XjZ) cannot be evaluated simply in closed form, iterative sampling

techniques can be used (Geman and Geman, 1984; Ripley and Sutherland, 1990; Grenan-

der et al., 1991; Storvik, 1994). The factored sampling algorithm (Grenander et al., 1991)

generates a random variate X

0

from a distribution ~p(X) that approximates the posterior

p(XjZ). First a sample-set fs

(1)

; : : : ; s

(N)

g is generated from the prior density p(X) and

then each index i 2 f1; : : : ; Ng is assigned with probability �

i

, where

�

i

=

p

z

(s

(i)

)

P

N

j=1

p

z

(s

(j)

)

and

p

z

(X) = p(ZjX);

the conditional observation density. The index i assigned by this procedure determines the

value X

0

= X

i

, and X

0

chosen in this fashion has a distribution which approximates the

posterior p(XjZ) increasingly accurately as N increases (�gure 3.3).

Note that posterior mean properties E [g(X)jZ] can be generated directly from the sam-

ples fs

(n)

g by weighting with p

z

(X) to give:

E [g(X)jZ] �

P

N

n=1

g(s

(n)

)p

z

(s

(n)

)

P

N

n=1

p

z

(s

(n)

)

: (3.7)

For example, the mean X can be estimated using g(X) = X (illustrated in �gure 3.4)

and the variance using g(X) = XX

T

� X

2

. In the case that p(X) is a spatial Gauss-

Markov process, Gibbs sampling from p(X) has been used to generate the random variates
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Probability

weighted
sample

posterior
density

State x

Figure 3.3: Factored sampling. A set of points s

(i)

, the centres of the blobs in the �gure, is

sampled randomly from a prior density p(X). Each sample is assigned a weight �

i

(depicted

by blob area) in proportion to the value of the observation density p(ZjX = s

(i)

). The

weighted point-set then serves as a representation of the posterior density p(XjZ), suitable

for sampling. The one-dimensional case illustrated here extends naturally to the practical

case that the density is de�ned over several position and shape variables.

fs

(1)

; : : : ; s

(N)

g. Otherwise, for low-dimensional parameterisations as in this thesis, stan-

dard, direct methods can be used for Gaussians

1

(Press et al., 1988). Note that, in the case

that the density p(ZjX) is normal, the mean obtained by factored sampling is consistent

with an estimate obtained more conventionally, and e�ciently, from linear least squares

estimation. For multi-modal distributions which cannot be approximated as normal, so

that linear estimators are unusable, estimates of mean X by factored sampling continue to

apply.

3.4 The Condensation algorithm

The Condensation algorithm is based on factored sampling but extended to apply itera-

tively to successive images in a sequence. The same sampling strategy has been developed

elsewhere (Gordon et al., 1993; Kitagawa, 1996), presented as developments of Monte-Carlo

methods, and various adaptations of the basic algorithm have appeared in the statistical

literature (Gordon and Salmond, 1995; Carpenter et al., 1997; Pitt and Shepherd, 1997;

Doucet, 1998) | these will be discussed in section 8.3.

1

Note: the presence of clutter causes p(ZjX) to be non-Gaussian, but the prior p(X) may still happily

be Gaussian or a Gaussian mixture, and that is what will be assumed in our experiments.
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(a) (b)

Figure 3.4: Sample-set representation of shape distributions The sample-set repre-

sentation of probability distributions, illustrated in one dimension in �gure 3.3, is illustrated

here (a) as it applies to the distribution of a multi-dimensional curve parameter x. Each

sample s

(n)

is shown as a curve (of varying position and shape) with a thickness proportional

to the weight �

n

. The weighted mean of the sample set (b) serves as an estimator of the

distribution mean.

Given that the process at each time-step is a self-contained iteration of factored sam-

pling, the output of an iteration will be a weighted, time-stamped sample-set, denoted

fs

(n)

t

; n = 1; : : : ; Ng with weights �

(n)

t

, representing approximately the conditional state-

density p(X

t

jZ

t

) at time t. How is this sample-set obtained? Clearly the process must begin

with a prior density and the e�ective prior for time-step t should be p(X

t

jZ

t�1

). This prior

is of course multi-modal in general and no functional representation of it is available. It is

derived from the sample set representation f(s

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng of p(X

t�1

jZ

t�1

),

the output from the previous time-step, to which prediction (3.5) must then be applied.

The iterative process as applied to sample-sets, depicted in �gure 3.5, mirrors the con-

tinuous di�usion process in �gure 3.2. At the top of the diagram, the output from time-step

t � 1 is the weighted sample-set f(s

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng. The aim is to maintain, at

successive time-steps, sample sets of �xed size N , so that the algorithm can be guaranteed

to run within a given computational resource. The �rst operation therefore is to sample

(with replacement) N times from the set fs

(n)

t�1

g, choosing a given element with probabil-

ity �

(n)

t�1

. Some elements, especially those with high weights, may be chosen several times,

leading to identical copies of elements in the new set. Others with relatively low weights
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p(x  | Z  )t t

t−1 t−1p(x     | Z     )

measure

p(x  | Z     )t t−1

(n)     (n)
t       ts  , π

t

(n)
st tp(z  | x  )

predict

π
t−1       t−1s     ,
(i)         (i)

Figure 3.5: One time-step in the Condensation algorithm. The three steps | drift-

di�use-measure | of the probabilistic propagation process of �gure 3.2 are represented in

the Condensation algorithm. Deterministic drift and di�usion are shown here as a single

prediction stage.

may not be chosen at all. Each element chosen from the new set is now subjected to the

predictive step. The stochastic nature of the motion model causes identical elements to

split and di�use through the state-space. At this stage, the sample set fs

(n)

t

g for the new

time-step has been generated but, as yet, without its weights; it is approximately a fair

random sample from the e�ective prior density p(X

t

jZ

t�1

) for time-step t. Finally, the

observation step from factored sampling is applied, generating weights from the observation

density p(Z

t

jX

t

) to obtain the sample-set representation f(s

(n)

t

; �

(n)

t

)g of the state-density

for time t.

Figure 3.6 gives a synopsis of the algorithm, and a proof of its asymptotic correctness

is given in appendix A.2 on page 145. The algorithm makes use of cumulative probabilities

c

(n)

t

calculated from the �

(n)

t

:

c

(0)

t

= 0;

c

(n)

t

= c

(n�1)

t

+ �

(n)

t

(n = 1; : : : ; N):
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In step 1 a base sample s

0

t

(n)

= s

(j)

t�1

is chosen from the sample-set fs

(n)

t�1

; �

(n)

t�1

; c

(n)

t�1

g with

probability �

(j)

t�1

. This can be done e�ciently as follows:

1. generate a random number r 2 [0; 1], uniformly distributed.

2. �nd, by binary subdivision, the smallest j for which c

(j)

t�1

� r

3. set s

0

t

(n)

= s

(j)

t�1

Alternatively, the following deterministic algorithm can be used to �nd all the s

0

t

(n)

at once:

initialise: j = 1. for n = 1 : : : N

while (c

(j)

t�1

< n) j++

set s

0

t

(n)

= s

(j)

t�1

.

The use of the random-sampling algorithm causes one iteration of the Condensation

algorithm to have formal complexity O(N logN) while the deterministic algorithm reduces

this to O(N). Carpenter et al. (1997) describe a random-sampling algorithm which again

leads to O(N) complexity for one iteration of Condensation but they appeal to results in

strati�ed sampling theory to argue that the deterministic method of choosing base samples

is more e�cient. Kitagawa (1996) also considers this problem in an Appendix and reports

that the best performance is achieved using the deterministic algorithm, preceded by a

sorting operation which orders the �

(n)

t�1

according to magnitude. Due to the computational

cost of this sort stage, he recommends the deterministic algorithm without sorting. Only the

results in chapter 6 were generated using this deterministic method; all the other examples

shown use the O(N logN) random-sampling scheme.

After any time-step of the Condensation algorithm, it is possible to \report" on the

current state, for example by evaluating some moment of the state density as shown in

�gure 3.6, and in later examples typically the curve outline displayed is the estimated mean

of the distribution. This can be misleading in the case of a multi-modal state distribution,

and one solution to this problem is discussed in chapter 7.

One of the striking properties of the Condensation algorithm is its simplicity, com-

pared with the Kalman �lter, despite its generality. Largely this is due to the absence of the

Riccati equation which appears in the Kalman �lter for the propagation of covariance. The

Riccati equation is relatively complex computationally but is not required in the Conden-

sation algorithm which instead deals with variability by sampling, involving the repeated

computation of a relatively simple propagation formula.



Chapter 3. The Condensation algorithm 44

Iterate

From the \old" sample-set fs

(n)

t�1

; �

(n)

t�1

; c

(n)

t�1

; n = 1; : : : ; Ng at time-step t�1, construct

a \new" sample-set fs

(n)

t

; �

(n)

t

; c

(n)

t

g; n = 1; : : : ; N for time t.

Construct the n

th

of N new samples as follows:

1. Select a sample s

0

t

(n)

= s

(j)

t�1

with probability �

(j)

t�1

. This can be done e�ciently

with the aid of the cumulative probabilities c

(n)

t�1

and this is discussed in the

text.

2. Predict by sampling from

p(X

t

jX

t�1

= s

0

t

(n)

)

to choose each s

(n)

t

. For instance, in the case that the dynamics are governed by

a linear stochastic di�erential equation, the new sample value may be generated

as: s

(n)

t

= As

0

t

(n)

+ Bw

(n)

t

where w

(n)

t

is a vector of standard normal random

variates, and BB

T

is the process noise covariance | see section 3.5.

3. Measure and weight the new position in terms of the measured features Z

t

:

�

(n)

t

= p(Z

t

jX

t

= s

(n)

t

)

then normalise so that

P

n

�

(n)

t

= 1 and store together with cumulative proba-

bility as (s

(n)

t

; �

(n)

t

; c

(n)

t

) where

c

(0)

t

= 0;

c

(n)

t

= c

(n�1)

t

+ �

(n)

t

(n = 1; : : : ; N):

Once the N samples have been constructed: estimate, if desired, moments of the

tracked position at time-step t as

E [f(X

t

)] =

N

X

n=1

�

(n)

t

f

�

s

(n)

t

�

obtaining, for instance, a mean position using f(X) = X.

Figure 3.6: The Condensation algorithm.
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3.5 Stochastic dynamical models for curve motion

In order to apply the Condensation algorithm, which is general, to tracking curves in

image-streams, speci�c probability densities must be established both for the dynamics

of the object and for the observation process. In the examples described here, x is the

linear parameterisation of a B-spline curve set out in section 2.1 on page 15 and X is the

augmented second-order state variable de�ned in (2.11) on page 28. The Condensation

algorithm itself does not necessarily demand a linear parameterisation and in chapter 6 a

simple non-linear parameterisation of Euclidean similarities is used.

The dynamical model (2.12) on page 28 can be re-expressed in such a way as to make

quite clear that it is a temporal Markov chain:

p(X

t

jX

t�1

) / exp�

1

2

kB

�1

(X

t

�D�AX

t�1

)k

2

(3.8)

where k : : : k is the Euclidean norm. It is therefore clear that the learned dynamical models

of section 2.5.1 are appropriate for use in the Condensation algorithm.

3.5.1 Initial conditions

Initial conditions for tracking can be determined by specifying the prior density p(X

0

), and

if this is Gaussian, direct sampling can be used to initialise the Condensation algorithm.

Alternatively it is possible simply to allow the density p(X

t

) to settle to a steady state

p(X

1

), in the absence of object measurements. Provided the learned dynamics are stable

(free of undamped oscillations) a unique steady state exists. Furthermore, if p(X

0

) is

Gaussian, p(X

1

) is Gaussian with parameters that can be computed by iterating the Riccati

equation (Gelb, 1974). At this point the density function represents an envelope of possible

con�gurations of the object, as learned during the training phase. (Background clutter, if

present, will modify and bias this envelope to some extent.) Then, as soon as the foreground

object arrives and is measured, the density p(X

t

) begins to evolve appropriately. In practice,

for most experiments, an initial con�guration

^

X

0

of the object is speci�ed by hand and p(X

0

)

is taken to be a small Gaussian distribution about

^

X

0

. Chapter 6 describes a method for

automatic re-initialisation which can be used when approximate information is available

about the object's position.
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3.6 Observation model

The observation process de�ned by p(Z

t

jX

t

) is assumed here to be stationary in time

(though theCondensation algorithm does not necessarily demand this) so a static function

p(ZjX) needs to be speci�ed. The assumption will also be made throughout this thesis that

the observation density depends only on the object's con�guration at the current timestep,

so when using an augmented state vector of the form in (2.11) on page 28 we can write

p(Z

t

jX

t

) = p(Z

t

jx

t

)

and so p(ZjX) and p(Zjx) will be used interchangeably with slight abuse of notation. As

yet we have no capability to estimate this function from data, though that would be

ideal, so some reasonable assumptions must be made. First a measurement model for

one-dimensional data with clutter is suggested. Then an extension is proposed for two-

dimensional observations that is also used later in computational experiments.

3.6.1 One-dimensional observations in clutter

In one dimension, observations reduce to a set of scalar positions fZ = (z

1

; z

2

; : : : ; z

M

)g

and the observation density has the form p(Zjx) where x is one-dimensional position. The

multiplicity of measurements re
ects the presence of clutter so either one of the events

�

m

= ftrue measurement is z

m

g; m = 1; : : : ;M

occurs, or else the target object is not visible with probability q = 1 �

P

m

P (�

m

). Such

reasoning about clutter and false alarms is commonly used in target tracking (Bar-Shalom

and Fortmann, 1988). Now the observation density can be expressed as

p(Zjx) = qp(Zjclutter) +

M

X

m=1

p(Zjx; �

m

)P (�

m

):

A reasonable functional form for this can be obtained by making some speci�c assumptions:

that

2

P (�

m

) = p; 8 m, that the clutter is a Poisson process along the line with spatial

density � and that any true target measurement is unbiased and normally distributed with

standard deviation �. This leads to

p(Zjx) / 1 +

1

p

2���

X

m

exp�

�

2

m

2�

2

(3.9)
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p(   | x)
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z

Figure 3.7: One-dimensional observation model. A probabilistic observation model

allowing for clutter and the possibility of missing the target altogether is speci�ed here as a

conditional density p(Zjx).

where � = q� and �

m

= z

m

� x, and is illustrated in �gure 3.7. Peaks in the density

function correspond to measured features and the state density will tend to be reinforced in

the Condensation algorithm at such points. The background level re
ects the possibility

that the true target has not been detected at all. The e�ect on tracking behaviour is to

provide for the possibility of \tunneling": a good hypothesis should survive a transitory

failure of observations due, for example, to occlusion of the tracked object. The parameters

� (units of distance) and � (units of inverse distance) must be chosen, though in principle

they could be estimated from data by observing measurement error � and both the density

of clutter � and probability of non-detection q.

Considerable economy can be applied, in practice, in the evaluation of the observation

density. Given a hypothesised position x in the \observation" step (�gure 3.6) it is not

necessary to attend to all features z

1

; : : : ; z

M

. Any �

m

for which

1

p

2���

exp�

�

2

m

2�

2

� 1

can be neglected and this sets a search window around the position x outside which mea-

surements can be ignored. For practical values of the constants the search window will have

2

There could be some bene�t in allowing the P (�

m

) to vary with m to re
ect varying degrees of feature-

a�nity, based on contrast, colour or orientation.
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a width of a few �. In practice the clutter is su�ciently sparse and � is su�ciently small

that the search window rarely contains more than one feature.

Note that the density p(Zjx) represents the information about x given a �xed number

M of measurements. Potentially, the event  

M

that there are M measurements, regardless

of the actual values of those measurements, also constitutes information about x. However,

we can reasonably assume here that

P ( 

M

jx) = P ( 

M

);

for instance because x is assumed to lie always within the image window. In that case, by

Bayes' theorem,

p(xj 

M

) = p(x)

| the event  

M

provides no additional information about the position x. (If x is allowed

also to fall outside the image window then the event  

M

is informative: a value of M well

above the mean value for the background clutter enhances the probability that x lies within

the window.)

3.6.2 Two-dimensional observations

In a two-dimensional image, the set of observations Z is, in principle, the entire set of features

visible in the image. However, an important aspect of earlier systems in achieving real-time

performance (Lowe, 1992; Harris, 1992; Blake et al., 1993b) has been the restriction of

measurement to a sparse set of lines normal to the tracked curve. These two apparently

con
icting ideas can be resolved as follows.

The observation density p(ZjX) in two dimensions describes the distribution of a param-

eterised image curve z(s

0

), given a hypothetical shape in the form of a curve r(s); 0 � s � L,

represented by a shape parameter x. The two-dimensional density can be derived as an ex-

tension of the one-dimensional case. It is assumed that a mapping g(s

0

) is known that

associates each point z(s

0

) on the image curve with a point r(g(s

0

)) on the shape. In

practice this mapping is set up by tracing normals from the curve r. Note that g(s

0

) is

not necessarily injective because z(s

0

) includes clutter as well as foreground features (�g-

ure 3.8). Next the one-dimensional density (3.9) is approximated in a more amenable form

that neglects the possibility of more than one feature lying inside the search interval:

p(Zjx) / exp�

1

2�

2

f(�

1

;�) where f(�;�) = min(�

2

; �

2

); (3.10)
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(s’)z

(s)r

s = s1

s’ = s’1

s’ = s’2

Figure 3.8: Clutter induces multiple feature hypotheses. A point s = s

1

on a hy-

pothetical shape curve r(s) is associated with two points s

0

= s

0

1

and s

0

= s

0

2

on the image

curve z(s

0

). This implies that the mapping g(s

0

), which associates each point z(s

0

) on the

image curve with a point r(g(s

0

)), is not injective, since g(s

0

1

) = g(s

0

2

) = s (see text).
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� =

p

2� log(1=

p

2���) is a spatial scale constant, and �

1

is the �

m

with smallest magnitude,

representing the feature lying closest to the hypothesised position x. A natural extension

to two dimensions is then

p(Zjx) = Z exp�

1

2r

Z

L

0

f(z

1

(s)� r(s);�) ds (3.11)

in which r is a variance constant and z

1

(s) is the closest associated feature to r(s):

z

1

(s) = z(s

0

) where s

0

= arg min

s

0

2g

�1

(s)

jr(s)� z(s

0

)j:

Note that the constant of proportionality (\partition function") Z(x) is an unknown func-

tion. We make the assumption that the variation of Z with x is slow compared with the

other term in (3.11) so that Z can be treated as constant over the expected variation in x

(which in principle may range over the entire image). It remains to establish whether this

assumption is justi�ed.

The observation density (3.11) can be computed via a discrete approximation, the sim-

plest being:

p(Zjx) / exp

(

�

M

X

m=1

1

2rM

f(z

1

(s

m

)� r(s

m

);�)

)

; (3.12)

where s

m

= m=M . This is simply the product of one-dimensional densities (3.10) with

� =

p

rM , evaluated independently alongM curve normals as in �gure 3.9. The parameters

which control the observation density are therefore �, � and M . The running time of the

algorithm in current implementations is largely dependent on the number of measurements

made, so a large value of M will slow the �lter down considerably. Judicious positioning

of the search lines s

m

at informative points on the shape model, rather than spacing the

s

m

evenly, can allow a smaller M for equivalent tracking performance. � very roughly

controls the clutter-resistance of the tracker: if an object is expected to lie in a clutter-free

environment then � can be set quite large, and as clutter density increases its value should

decrease accordingly. � should be set according to the accuracy of the shape model. If the

expected object appearance is very well modelled by the the shape-space then a small value

of � can be used since features can be expected to be found very close to the predicted curve.

If however the shape model is inaccurate, a larger value of � will permit tracking of shapes

which are not exactly within the modelled space, while increasing the risk of distraction by

clutter. Values of parameters used in experiments are given in the next chapter.
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Figure 3.9: Observation process. The thick line is a hypothesised shape, represented as

a parametric spline curve. The spines are curve normals along which high-contrast features

(white circles) are sought.
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It is now apparent why a mixture of Gaussians representation in a Kalman �ltering

framework would be ine�cient using this observation density. The number k of mixture

components in the observation density for a given image would be the product

k =

M

Y

m=1

j�

m

j

where j�

m

j is the number of features detected along search-line m. As explained in sec-

tion 3.2.4 a Gaussian-mixture Kalman �lter must e�ectively runMk separate Kalman �lter

updates, where M is the desired number of mixture components after pruning. For a naive

application of a Gaussian mixture �lter to the image in �gure 3.9, k would be in excess of

40 million. A more practical approach would be to assimilate measurements into the �lter

from each search-line individually, pruning after each line, but this would be expected to

be very sensitive to the exact method used for pruning, as well as the order in which the

search-lines were presented.



4

Applying the Condensation

algorithm to video-streams

This chapter describes a series of experiments which were undertaken to test the practical

e�cacy of the Condensation algorithm.

4.1 Tracking a multi-modal distribution

The ability of the Condensation algorithm to represent multi-modal distributions was

tested using a 70 frame (2.8 second) sequence of a cluttered room containing three people

each facing the camera (�gure 4.1). One of the people moves from right to left, in front

of the other two. The shape-space for tracking is built from a hand-drawn template of

head and shoulders (�gure 3.9 on page 51) which is then allowed to deform via planar

a�ne transformations. A Kalman �lter contour-tracker (Blake et al., 1993b) with default

motion parameters is able to track a single moving person just well enough to obtain a

sequence of outline curves that is usable as training data. Given the high level of clutter,

adequate performance with the Kalman �lter is obtained here by means of background

modelling (Rowe and Blake, 1996), a statistical form of background subtraction, which

e�ectively removes clutter from the image data before it is tracked. It transpires, for this

particular training set, that the learned motions comprise primarily horizontal translation,

with vertical translation and horizontal and vertical shear present to a lesser degree.

The learned shape and motion model can now be installed as p(X

t

jX

t�1

) in theConden-
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Figure 4.1: Tracking three people in a cluttered room. The �rst frame of a sequence

in which one �gure moves from right to left in front of two stationary �gures.

sation algorithm which is now run on a test sequence but without the bene�t of background

modelling, so that the background clutter is now visible to the tracker. Figure 4.2 shows

how the state-density evolves as tracking progresses. Initialisation is performed simply by

iterating the stochastic model, in the absence of measurements, to its steady state and it

can be seen that this corresponds, at time 0, to a roughly Gaussian distribution, as ex-

pected. The distribution rapidly collapses down to three peaks which are then maintained

appropriately even during temporary occlusion. Although the tracker was designed to track

just one person, the Condensation algorithm allows the tracking of all three, for free; the

ability to represent multi-modal distributions e�ectively provides multiple hypothesis ca-

pability. (In fact, it is not expected that multiple hypotheses will survive inde�nitely as

comparably-sized peaks in the posterior distribution. If, in a given image, one object is

slightly more like the model than another, the �rst object will induce a slightly larger peak

in the posterior. Over time, however, if the same object is always slightly preferred by the

observation model, the cumulative e�ect of repeated measurement will cause the posterior

density mass to focus primarily on that object and other objects' peaks will become small or

disappear altogether.) Tracking is based on frame rate (40 ms) sampling in this experiment

and distributions are plotted in the �gure for alternate frames. The experiment was run
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Figure 4.2: Tracking with multi-modal state-density. An approximate depiction of the

state-density is shown, computed by smoothing the distribution of point masses s

(1)

t

; s

(2)

t

; : : :

in the Condensation algorithm. The density is, of course, multi-dimensional; its projec-

tion onto the horizontal translation axis is shown here. The initial distribution is roughly

Gaussian but this rapidly evolves to acquire peaks corresponding to each of the three people

in the scene. The right-most peak drifts leftwards, following the moving person, coalescing

with and separating from the other two peaks as it moves. Having speci�ed a tracker for one

person we have in a sense, for free, a multi-person tracker, owing to the innate ability of the

Condensation algorithm to maintain multiple hypotheses. There is however no constraint

to ensure that the number of people being tracked remains constant, so all of the density

could shift on to one person eventually.
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using a distribution of N = 1000 samples per time-step.

4.2 Tracking rapid motions through clutter

The ability to track more agile motion, still against clutter, was tested using a 500 �eld

(10 second) sequence of a girl dancing vigorously to a Scottish reel. The shape-space for

tracking was planar a�ne, based on a hand-drawn template curve for the head outline. The

training sequence consisted of dancing against a largely uncluttered background, tracked

by a Kalman �lter contour-tracker with default dynamics to record 140 �elds (2.8 seconds)

of tracked head positions, the most that could be tracked before losing lock. Those 140

�elds were su�cient to learn a bootstrap motion model which then allowed the Kalman

�lter to track the training data for 800 �elds (16 seconds) before loss of lock. The motion

model obtained from these 800 �elds was used in experiments with the Condensation

tracker and applied to the test data, now including clutter. The use of a Kalman �lter in

the training stage was purely for experimental convenience given the experimental setup at

the time. The Condensation algorithm could equally well have been used with a default

motion model and this was done in later experiments, for example in sections 4.5 and 5.3.

Figure 4.3 shows some stills from the test sequence, with a trail of preceding head

positions to indicate motion. The motion is primarily translation, with some horizontal

shear apparent as the dancer turns her head. Representing the state density with N = 750

samples at each time-step proves su�cient for successful tracking. As in the previous

example, a prior density can be computed as the steady state of the motion model and, in

this case, that yields a prior for position that spreads across most of the image area, as might

be expected given the range of the dance. Such a broad distribution cannot e�ectively be

represented by just N = 750 samples. One alternative is to increase N in the early stages

of tracking, and this is done in a later experiment. Alternatively, the prior can be based

on a narrower distribution whose centre is positioned by hand over the object at time 0,

and that is what was done here. Observation parameters were � = 24; � = 7 with M = 18

normals.

Figure 4.4 shows the motion of the centroid of the estimated head position as tracked

both by the Condensation algorithm and by a Kalman �lter using the same motion model.

TheCondensation tracker correctly estimated head position throughout the sequence, but

after about 40 �elds (0.80 s), the Kalman �lter was distracted by clutter, never to recover.
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�eld 91 (1820 ms) �eld 121 (2420 ms)

�eld 221 (4420 ms) �eld 265 (5300 ms)

Figure 4.3: Tracking agile motion in clutter. The test sequence consists of 500 �elds (10

seconds) of agile dance against a cluttered background. The dancer's head is tracked through

the sequence. Several representative �elds are shown here, each with a trail of successive

mean tracked head positions at intervals of 40 ms. The Condensation algorithm used

N = 750 samples per time-step to obtain these results.
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X
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Condensation tracker

X

Y

Kalman filter tracker

Time = 10 s Time = 10 s

Figure 4.4: The Condensation tracker succeeds where a Kalman �lter fails. The

estimated centroid for the sequence shown in �gure 4.3 is plotted against time for the entire

500 �eld sequence, as tracked �rst by the Condensation tracker, then by a comparable

Kalman �lter tracker. The Condensation algorithm correctly estimates the head position

throughout the sequence. The Kalman �lter tracks brie
y, but is soon distracted by clutter

and never recovers.

Given that there is only one moving person in this experiment, unlike the previous one

in which there were three, it might seem that a unimodal representation of the state density

should su�ce. This is emphatically not the case. The facility to represent multiple modes

is crucial to robustness as �gure 4.5 illustrates. The �gure shows how the distribution

becomes misaligned (at 900ms), reacting to the distracting form of the computer screen.

After a further 20ms the distribution splits into two distinct peaks, one corresponding to

clutter (the screen), one to the dancer's head. At this point the clutter peak actually has

the higher posterior probability | a unimodal tracker, for instance a Kalman �lter, would

almost certainly discard the lower peak, rendering it unable to recover. The Condensation

algorithm however, capable as it is of carrying several hypotheses simultaneously, does

recover rapidly as the clutter peak decays for lack of con�rmatory observation, leaving just

one peak corresponding to the dancer at 960 ms.
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�eld 45 (900 ms) �eld 46 (920 ms)

�eld 47 (940 ms) �eld 48 (960 ms)

Figure 4.5: Recovering from tracking failure. Detail from 4 consecutive �elds of the

sequence illustrated in �gure 4.3. Each sample from the distribution is plotted on the image,

with intensity scaled to indicate its posterior probability. (Most of the N = 750 samples have

too low a probability to be visible in this display.) In �eld 45, the distribution is misaligned,

and has begun to diverge. In �elds 46 and 47 it has split into two distinct peaks, the larger

attracted to background clutter, but converges back onto the dancer in �eld 48.
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4.3 Tracking an articulated object

The preceding sequences show motion taking place in a�ne shape-spaces of just 6 dimen-

sions. High dimensionality is one of the factors, in addition to agility and clutter, that

makes tracking hard (Blake et al., 1993b). In order to investigate tracking performance in

higher dimensions, we used a 500 �eld (10 second) test sequence of a hand translating, ro-

tating, and 
exing its �ngers independently, over a highly cluttered desk scene (�gure 4.6).

Figure 4.7 shows just how severe the clutter problem is | the hand is immersed in a dense

Figure 4.6: A hand moving over a cluttered desk. Field 0 of a 500 �eld (10 second)

sequence in which the hand translates, rotates, and the �ngers and thumb 
ex independently.

�eld of edges.

A model of shape and motion model was learned from training sequences of hand motion

against a plain background, tracked by Kalman �lter (using signed edges to help to disam-

biguate �nger boundaries). The procedure comprised several stages, creative assembly of

methods from the available \toolkit" for learning (Blake and Isard, 1998).



Chapter 4. Applying the Condensation algorithm to video-streams 61

CondensationEdge detector

Figure 4.7: Severe clutter. Detail of one �eld (�gure 4.6) from the test-sequence shows the

high level of potential ambiguity. Output from a directional Gaussian edge detector shows

that there are many clutter edges present as potential distractors.

1. Shape-space was constructed from 6 templates drawn around the hand with the palm

in a �xed orientation and with the �ngers and thumb in various con�gurations. The

6 templates combined linearly to form a 5-dimensional space of deformations which

were then added to the space of translations to form a 7 dimensional shape-space.

2. Default hand-speci�ed dynamics in the shape-space above were adequate to track

a clutter-free training sequence of 600 frames in which the palm of the hand maintained

an approximately �xed attitude.

3. Principal components analysis: the sequence of 600 hand outlines was replicated

with each hand contour rotated through 90 degrees and the sequences concatenated

to give a sequence of 1200 deformations. Projecting out the translational component

of motion, the application of Principal Component Analysis (PCA) to the sequence

of residual deformations of the 1200 contours established a 10-dimensional space that

was con�ned almost entirely to deformation and rotation. This was then combined

with the translational space to form a 12-dimensional shape-space that accounted

both for the 
exing of �ngers and thumb and also for rotations of the palm.

4. Bootstrapping: a Kalman �lter with default dynamics in the 12-dimensional shape-

space was su�cient to track a training sequence of 800 �elds of the hand translating,

rotating, and 
exing �ngers and thumb slowly. This was used to learn a model of

motion.
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5. Re-learning: that motion model was installed in a Kalman �lter used to track

another, faster training-sequence of 800 �elds. This allowed a model for more agile

motion to be learned, which was then used in experiments with the Condensation

tracker.

Figure 4.8: Tracking a 
exing hand across a cluttered desk. Representative stills

from a 500 �eld (10 second) sequence show a hand moving over a highly cluttered desk

scene. The �ngers and thumb 
ex independently, and the hand translates and rotates. Here

the Condensation algorithm uses N = 1500 samples per time-step initially, dropping

gradually over 4 �elds to N = 500 for the tracking of the remainder of the sequence. The

mean con�guration of the contour is displayed.

Figure 4.8 shows detail of a series of images from a tracked, 500 �eld test-sequence. The

initial state density was simply the steady state of the motion model, obtained by allowing

the �lter to iterate in the absence of observations. Tracker initialisation was facilitated

by using more samples per time-step (N = 1500) at time t = 0, falling gradually to 500

over the �rst 4 �elds. The rest of the sequence was tracked using N = 500. As with the

previous example of the dancer, clutter can distract the tracker but the ability to represent

multi-modal state density means that tracking can recover.

4.4 Tracking a camou
aged object

Next, we tested the ability of the algorithm to track rapid motion against background dis-

traction in the extreme case that background objects actually mimic the tracked object.

A 12 second (600 �eld) sequence showed a bush blowing in the wind, the task being to

track one particular leaf. A template was drawn by hand around a still of one chosen

leaf and allowed to undergo a�ne deformations during tracking. Given that a clutter-free

training sequence was not available, the motion model was again learned by means of a
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bootstrap procedure. A tracker with default dynamics proved capable of tracking the �rst

150 �elds of a training sequence before losing the leaf, and those tracked positions allowed

a �rst approximation to the model to be learned. Installing that in a Condensation

tracker, the entire sequence could be tracked, though with occasional misalignments. Fi-

nally a third learned model was su�cient to track accurately the entire 12-second training

sequence. Despite occasional violent gusts of wind and temporary obscuration by another

leaf, the Condensation algorithm successfully followed the object, as �gure 4.9 shows.

In fact, tracking is accurate enough using N = 1200 samples to separate the foreground

1.46 s 2.66 s

5.54 s 7.30 s

Figure 4.9: Tracking with camou
age. The aim is to track a single camou
aged moving

leaf in this 12-second sequence of a bush blowing in the wind. Despite the heavy clutter of

distractors which actually mimic the foreground object, and occasional violent gusts of wind,

the chosen foreground leaf is successfully tracked throughout the sequence. Representative

stills depict mean contour con�gurations, with preceding tracked leaf positions plotted at

40ms intervals to indicate motion.
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leaf from the background reliably, an e�ect which can otherwise only be achieved using

\blue-screening" (�gure 4.10). Having obtained the model iteratively as above, indepen-

Figure 4.10: Automated video editing. Tracking the outline of a foreground object

allows it to be separated automatically from the background, and manipulated as desired,

a special e�ect which can otherwise only be achieved by \blue-screening" from specially

prepared footage.

dent test sequences could be tracked without further training. With N = 1200 samples per

time-step the tracker runs at 6.5Hz on a SGI Indy SC4400 200MHz workstation. Reducing

this to N = 200 increases processing speed to video frame-rate (25Hz), at the cost of oc-

casional misalignments in the mean con�guration of the contour. Observation parameters

were � = 8; � = 3 with M = 21 normals. The leaf is a good example of an object which

deforms freely in a six-dimensional a�ne space, so the learnt motion model is shown in

�gure 4.11 as a representative example of second-order dynamics.

4.4.1 Investigating performance as a factor of N

Although the Condensation algorithm has been shown in the preceding chapter to be

asymptotically correct as N ! 1, it is hard to show any analytic results concerning its

behaviour for �nite N . A simple experiment was conducted (data courtesy of John Mac-

Cormick) to investigate the variance of the Condensation algorithm as an estimator of

the x translation coordinate of the leaf in the preceding video sequence. For various values

of N , the algorithm was run M = 50 times in succession, each time using a di�erent seed

for the random number generator. In each case, the algorithm was initialised so that all the

samples were correctly positioned over the leaf in the �rst timestep, and then the algorithm
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Figure 4.11: Learnt motion model for the leaf tracker. Parameters are as described

in section 2.5 on page 28. The shape-space is 2D-a�ne.
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was run for 5 timesteps. At that point a �ltered estimate x̂

(k;N)

was computed from the

Condensation sample set where k = 1 : : : M is the index of the trial for a given N . The

variance

v

N

=

1

M

M

X

k=1

(x̂

(k;N)

� �x

(k;n)

)

2

; where

�x

(k;n)

=

1

M

M

X

k=1

x̂

(k;N)

was then computed, and results are shown in �gure 4.12. Clearly the variance of the

estimated translation coordinate decreases rapidly as N increases.
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Figure 4.12: The variance of Condensation as an estimator decreases as N in-

creases. The vertical axis shows the variance of the Condensation estimate of the x

translation coordinate of the leaf over 50 runs of the algorithm, as a function of the number

of samples N . (Data courtesy of John MacCormick.)

4.5 Pose recovery from a 3D object

Finally, a 3D-a�ne rigid model (Blake and Isard, 1998) was built for a sprig of leaves, and

the tracked outline used to recover the pose of the object. Building the shape model was

a two-stage process: �rst, eight representative views of the leaves were chosen by hand

and a structure recovery algorithm based on factorisation (Blake and Isard, 1998; Tomasi
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and Kanade, 1991) was used to determine the 3D-a�ne shape-space. The factorisation

algorithm is modi�ed slightly; here B-spline control points are substituted for the 2D point

locations used by (Tomasi and Kanade, 1991) in the original algorithm. After initial tracking

it was clear that this shape-space contained inaccuracies, with the result that from some

views no vector within the shape-space would �t the observed outline. Seven more views

were taken at orientations which exposed the 
aws in the original shape-space and the

structure algorithm was run again to construct a new shape-space from the �fteen views

taken together, which proved satisfactory. When tracking in very dense clutter the shape

model must be accurate, and so the second iteration of the structure-�tting process process

was essential. As noted below, a value of � = 2:74 pixels is used which does not allow high

deviations from the modelled shape-space (compare with the dancer model of section 4.2,

in which a simple oval is used to represent the girl's head, and � = 7 pixels).

Default values for the dynamical parameters A, B and D were chosen, allowing the

�rst 5 seconds of a clutter-free sequence to be tracked using the Condensation algorithm.

Initial estimates for the dynamics matrices were learned from these 250 video �elds and

using this learnt dynamical model, the �rst 10 seconds of the clutter free sequence were

then tracked, more accurately than before. Another bootstrap model was learned from

these 500 �elds, with which the whole sequence could be tracked. The �nal values of the

dynamical parameters were learned from these 1322 tracked �elds. This �nal model was

then used again to track all 1322 �elds of the clutter free sequence, and the 250 �elds of

the cluttered sequence to give the results shown. It was found that the bootstrapping was

necessary because at several points during the sequence a new motion was introduced which

had not been present in the preceding �elds. Because of the nature of the learned model,

novel motions are more di�cult to track, and so the �lter occasionally fails. Before failure,

however, it was able to track the novel motion well enough that a retrained tracker was able

to follow the motion correctly. The parameters used in the Condensation algorithm are

as follows.

Image sequence N � �

Clutter-free 4000 2.74 25

Cluttered 7500 2.74 25

Due to the di�culty of the tracking problem, a large value of N was necessary, and conse-

quently the algorithm ran signi�cantly slower than real-time | for the cluttered sequence

the processing time was approximately 2 seconds per �eld on an SGI Indy R4400 200 MHz

(100 times slower than real time).
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Figure 4.13 shows that the clutter is severe enough to cause humans di�culties in iden-

tifying the leaf outlines from still images. Motion information is exploited by the Con-

densation algorithm, as it is by human vision, to enable successful tracking. Although

the background demonstrated is static, no background subtraction was performed, and a

moving background could be tolerated. Indeed the hand, which moves relative to both

the background and the leaves and presents signi�cant clutter edges, does not distract the

tracking.

Figure 4.13: Tracking is robust to very heavy background clutter. Despite the

di�culty, even for humans, of identifying the leaf outlines from a still image, the tracker is

able to use information from preceding frames combined with a motion model to successfully

track through very heavy clutter (see results in �gure 4.16).

Representative still frames of the tracked outlines and superimposed graphics for both

sequences are shown in �gures 4.14{4.17. The graphics have been rendered using simple

motion blur by averaging �ve images to produce each �eld. The images are produced

by interpolating the values in the linear shape-space between adjacent tracked �elds, and

then performing pose recovery on each interpolated shape-space vector before averaging

the resulting rendered images. The addition of motion blur is very important when com-
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bining computer-generated graphics with fast-moving video sequences. Without arti�cial

blur the graphics retain sharp edges, giving a bright, unreal appearance in the �nal video.

Figure 4.16 also includes a pose graphic which demonstrates that full 3D orientation in-

formation is extracted from the tracking. It is apparent that some images include large

inter-�eld displacements, and tracking is successful despite these high image velocities. The

tracker can follow more agile motions in the absence of clutter, since the introduction of such

a cluttered background makes the tracking problem much harder. Nevertheless impressive

results are achieved tracking against the woodland backdrop, and tracking is accurate ex-

cept for a 10 �eld portion half way through the sequence, when two leaves becomes partially

misaligned before tracking recovers (�gure 4.19). Figure 4.18 shows the more traditional

matting application of transferring an object from one image sequence to another. Since

pose has been recovered, computer graphics can be rendered attached to the foreground ob-

ject at the same time. Two frames are shown from a sequence in which the leaves from the

sequence tracked against a blank background have been re-rendered, with their attendant


owers and 
owerpot, in a sequence of a \walk" around a room.
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(a) (b)

(c) (d)

Figure 4.14: Automatic clutter-free tracking. Each image shows detail from one inter-

laced frame. Field rate is PAL, 50 Hz. Tracking is able to cope with large inter-�eld motions

as can be seen from image (a). Image (c) shows that even at degenerate points where one

leaf is barely visible, tracking remains accurate. The tracked outlines have been rendered

with simple motion blur by linearly interpolating �ve positions between tracked �elds and

averaging the resulting rendered images. Clutter-free tracking is used to learn a model for

tracking in clutter.
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(a) (b)

(c) (d)

Figure 4.15: Computer generated graphics are superimposed on real images using

pose recovered from automatically tracked object outlines. Each image shows detail

from one interlaced PAL frame. The original images with tracked outlines superimposed are

shown in �gure 4.14. The 
owers and 
owerpot have been rendered with simple motion blur

by linearly interpolating �ve outline positions between tracked �elds and performing pose

recovery on each, then averaging the resulting rendered images.
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(a) (b)

(c) (d)

Figure 4.16: Automatic tracking is successful even against very heavy clutter.

The tracked position was accurate over the entire 250 �eld sequence, except for a modest

partial misalignment in the middle of the sequence, which lasted for 10 �elds. Rendering is

as in �gure 4.14, and the target graphic is included to demonstrate that full 3D orientation

information is being extracted.
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(a) (b)

(c) (d)

Figure 4.17: Computer generated graphics are automatically inserted into a com-

plex scene. Using the tracked outlines shown in �gure 4.16 pose can be recovered allowing

the virtual 
owers and 
owerpot to be inserted \attached" to the leaves. The computer gen-

erated objects are shown passing between the foreground and background of the real scene.

Rendering is as in �gure 4.15.
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Figure 4.18: A tracked object with its attached computer graphics can be re-

rendered in another scene. The traditional application of matting is to transfer an

object from one sequence to another. Here the leaves have been segmented from two frames

of the uncluttered sequence and, along with their 
owers and pot, are superimposed on

another sequence | a \walk" around a room. Pose recovery is useful for attaching computer

generated images to real objects even in the case that the object can be �lmed against an

arti�cial background.
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Figure 4.19: Slight tracking failures do not a�ect gross pose recovery. Tracking

the top two leaves is slightly misaligned for 10 �elds in the middle of the heavily cluttered

sequence. Gross pose recovery is still correct, but on the video it is apparent that a slight

scaling of the rendered graphics takes place due to the tracking error.



5

Mixed discrete-continuous motion

models

This chapter describes a class of motion models which extend the 2nd-order ARPs from

section 2.5, and illustrates the 
exibility of the Condensation algorithm in accommodating

complex non-linear models.

There is signi�cant interest in the computer vision community in the explicit represen-

tation and modelling of motion (Blake et al., 1995; Baumberg and Hogg, 1995b; Bobick and

Wilson, 1995; Freeman and Roth, 1995; Bregler and Omohundro, 1995; Hennecke et al.,

1995; Petajan and Graf, 1995). It is motivated by both the need for accurate motion predic-

tion to permit robust tracking, and the desire to interpret the motion in video sequences to

allow reasoning about the content of a sequence, for example for gesture or speech recogni-

tion. Considerable success has been demonstrated (Blake et al., 1995; Baumberg and Hogg,

1995b) using the learnt motion models of section 2.5.1 to improve the agility and robust-

ness of trackers, allowing progress to be made for example in audiovisual speech recognition

(Kaucic et al., 1996), by enabling lip outlines to be accurately tracked. There is a limit to

the complexity of the resulting ARP based models, however, and a natural generalisation

is to allow multiple models, with switching between models as appropriate. This allows a

wider range of motion to be supported without losing the advantages of accurate prediction,

and as a side-e�ect the model in use at a given timestep acts as a recogniser discriminating

between the distinct motions. A mixed discrete/continuous tracker combines the 
exibility

of continuous-valued motion models, vital for tracking objects which have variable, complex
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shape, with the powerful �nite state-based descriptions used to model sequential actions,

for example in Hidden Markov Models.

In order to combine continuous- and discrete-state motion models it is necessary to

construct a mixed-state model representation uniting discrete and continuous random vari-

ables in a single parameter vector. A single p.d.f. then describes the joint density of the

continuous and discrete variables as they evolve over time. Kalman-�lter based techniques

to switch between multiple models have been known for some time in the control litera-

ture, the dominant example being the Interacting Multiple Model (IMM) �lter (Blom and

Bar-Shalom, 1988). In order to permit multiple models it is vital to be able to represent

multiple competing hypotheses, since in general each discrete state is associated with a

separate peak in the joint p.d.f. at each timestep. In common with other generalisations of

the Kalman �lter which allow multiple hypotheses, for example the JPDAF (Bar-Shalom

and Fortmann, 1988), the IMM is faced with a combinatorial explosion of hypotheses and

must use pruning techniques to run within a �nite computing resource.

There is a great deal of current interest in motion analysis for application to gesture

recognition, usually for gestures either of a hand or the full body. Discrete-state based

models have been applied successfully (Freeman and Roth, 1995; Starner and Pentland,

1995; Bobick and Wilson, 1995; Kjeldsen and Kender, 1996) when the gestures of interest

comprise a predictable sequence of actions. Continuous-valued models have been used to

recognise oscillatory gestures (Cohen et al., 1996) or paths in a continuous-valued pattern

space (Nagaya et al., 1996). There is also active research into the problem of audiovisual

speech recognition using computer vision techniques (Bregler and Omohundro, 1995; Hen-

necke et al., 1995; Petajan and Graf, 1995; Kaucic et al., 1996). Bregler and Malik (1997)

used a hierarchical model to classify the output of a Kalman �lter using a Hidden Markov

Model representation of human motion. Black and Jepson (1998) used the Condensa-

tion algorithm to classify gestures tracked using an optic-
ow method according to one

of several potential trajectory models. Existing research divides the recognition process

into two stages. First, some low-dimensional feature vector is extracted from an image |

this commonly takes the form of image moments, the components from an image eigen-

decomposition, or the output from some region- or contour-based tracker. Only when this

information has been extracted is recognition performed on the low-dimensional data. A

great potential advantage of the multiple-model approach is that recognition and feature

extraction can be performed jointly, and so the form of the expected gesture can be used
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to guide feature search, potentially making it more e�cient and robust. Existing gesture

recognition systems often work on rather coarse shapes; for example hands are usually rep-

resented as segmented blobs with no interior structure. For some applications, for example

when �ne-scale information such as the positions of individual �ngers is needed, it is essen-

tial to use a framework which allows complex continuous-valued shape models rather than

a �nite number of states.

5.1 A mixed-state dynamical model

As described in section 3.2 on page 33, the process density p(X

t

jX

t�1

) can have a somewhat

general form, and this fact can be exploited to allow the Condensation algorithm to

support, and automatically switch between, multiple motion models. The extended state is

de�ned to be

X = (

~

X; y)

where y 2 f1; : : : ; N

S

g is a discrete variable labelling the current model, and

~

X is an

augmented second-order vector in the parameter space which describes the con�guration of

the object, as in chapter 3;

~

X

t

=

�

x

t�1

x

t

�

:

As in the previous chapter, the process density is �rst-order Markov in the augmented state,

and it can then be decomposed as follows:

p(X

t

jX

t�1

) = p(

~

X

t

jy

t

;X

t�1

)P (y

t

jX

t�1

)

T

ij

(

~

X

t�1

) � P (y

t

= jj

~

X

t�1

; y

t�1

= i)

where the T

ij

are state transition probabilities. The continuous motion models for each

transition are given by the sub-process densities

p

ij

(

~

X

t

j

~

X

t�1

) � p(

~

X

t

j

~

X

t�1

; y

t�1

= i; y

t

= j):

We assume that the discrete label is a \hidden" state, so

p(Z

t

jX

t

) � p(Z

t

j

~

X

t

)

and use these two distributions interchangeably by abuse of notation as in section 3.6 on

page 46. In order to implement a model in the Condensation framework it is su�cient
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to specify a sampling algorithm for the state evolution density, to occupy step 2 in the

algorithm in �gure 3.6 on page 44. The procedure for mixed-state Condensation is shown

in �gure 5.1.

Samples s

(n)

t

in the algorithm in �gure 3.6 on page 44 are now mixed-state samples

s

(n)

t

= (
~
s

(n)

t

; y

(n)

t

):

Step 1 in the algorithm has selected a base sample s

0

t

(n)

= (
~
s

0

t

(n)

; y

0

t

(n)

= i). The

following is now used as a replacement for step 2.

Predict by sampling from p(X

t

jX

t�1

= s

0

t

(n)

) to choose s

(n)

t

.

1. Sample transition probabilities

P (y

(n)
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~
s
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(n)

)
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(n)

t

.

2. Sample sub-process density
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~

X
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0

t

(n)
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(n)
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3. Store as s

(n)
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~
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(n)

t

; y

(n)

t
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Figure 5.1: The sampling algorithm for a mixed-state Condensation model.

Merely by constructing a model of this form and implementing it within a Condensa-

tion tracker, the model transitions can be expected to occur automatically when appro-

priate. This informal statement proceeds directly from the structure of the process density

p(X

t

jX

t�1

). Each discrete state transition with non-zero probability contributes samples to

the state distribution, and several such peaks are maintained while the motion is ambigu-

ous. The weighting applied by the observation density ensures that as soon as one model

predicts the object's position signi�cantly more accurately than the others, the samples

corresponding to that model will dominate, as shown in �gure 5.2.

The simplifying assumption will be made here that

T

ij

(

~

X) � T

ij

and the discrete probabilities T

ij

will be speci�ed by hand for the results which follow.
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Time

R

R

L

L

L

Figure 5.2: A two-state constant velocity tracker switches state when the direc-

tion changes. Red ellipses belong to a model with constant velocity to the right, blue to the

left. The green arrow shows the true motion of the object. The size of the ellipses indicates

the weight assigned to each sample by the observation density. As the object changes direc-

tion the blue samples are more accurate predictors, so their weights increase and the model

switches from red to blue. The MAP estimate of the current discrete state is shown by the

label at the right at each timestep.
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It has previously been found (Blake et al., 1995) that performance of single-state Kalman

�lters is greatly improved when continuous motion models learned from training data are

substituted for hand-coded default models, and in section 5.3 as in chapter 3 we use this

methodology to determine the sub-process densities p

ij

(X

t

jX

t�1

). It may be the case that

learning is also invaluable for the joint process density of a multiple-model �lter, and this

estimation problem is discussed in section 8.5.

5.2 Modelling a bouncing ball

The power of the mixed-state approach to modelling motion can be demonstrated with a

simple example. A mixed-state model was constructed to model a ball which falls vertically

and bounces on a table-top. In this situation, there are two discrete states (N

S

= 2).

State y = 1 corresponds to the default behaviour of constant acceleration due to gravity,

and y = 2 is a \bounce event" during which the vertical velocity is reversed and damped by

the coe�cient of restitution e. It is assumed that a bounce may not be followed immediately

by another bounce, and so the model always decays immediately back to state y = 1 after

a bounce state y = 2 (so T

21

= 1; T

22

= 0). Furthermore we restrict

p

ij

(: : :) � p

j

(: : :)

so the continuous motion model depends only on the new discrete label y

t

and not the label

y

t�1

from the previous timestep. The full motion model is shown in �gure 5.3 | an extra

random variable � 2 [0; 1) is introduced in the sampling scheme for bounce states y = 2 to

model the exact moment of the bounce between discrete timesteps (this is an example of the


exibility in model design possible when the only constraint is that it must be possible to

sample the sub-process density). The parameters which determine the model are as follows;

� a: constant acceleration due to gravity

� �

h

: standard deviation of vertical position noise added to perturb constant accelera-

tion states y = 1

� b: probability of a bounce event occurring (T

12

)

� e: coe�cient of restitution for vertical velocity at bounce states y = 2

� �

B

: standard deviation of vertical position noise added to perturb bounce states y = 2
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� �

v

: standard deviation of vertical velocity noise added to perturb bounce states y = 2

Constant acceleration a (y

t

= 1).

h
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Figure 5.3: The two transition modes of a bouncing ball model.

(note that T

11

is uniquely determined by T

11

= 1� b) and the observation density p(ZjX) is

the same as in chapter 3, with � = 20; � = 1; M = 24. The curve estimate used for display

purposes is calculated in two stages as follows. First the MAP estimate for the discrete



Chapter 5. Mixed discrete-continuous motion models 83

state y

t

is found from

ŷ

t

= arg max

j
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t

= jjZ

t

)

= arg max

j

X

n2�

j
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(n)

t
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�

j

= fnjs
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t
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~
s

(n)

t

; j)g:

Then the estimate for the shape-space parameter vector is found from the weighted mean

of that discrete sample set:
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; ŷ

t

)g:

and it is this mean estimate which is displayed in the �gures which follow.

To test the model, a sequence was recorded showing a ball bouncing against a blank

background, and tracked twice, once with the mixed-state bounce model, and once with a

single-state constant acceleration model (with parameters �

h

and a de�ned as for the mixed-

state model). Both models use an a�ne shape-space for the ball, with a random walk of

small amplitude on the x coordinate and the four shape parameters. The bounce transition

parameters were set manually to b = 0:1, e = 0:67, �

B

= 2pixels and �

v

= 10 pixels/second,

and both models used �

h

= 4pixels and a = 4:17 pixels/second

2

. As �gure 5.4 shows, the

mixed-state model correctly follows the ball when it bounces, while the single-state constant

acceleration model continues on a downward path, losing track of the ball. By increasing �

h

to 25 pixels for the single-state model, however, the �lter is able to �nd the ball even after

the bounce, as the �gure shows.

The true utility of the more accurate mixed-state motion model is demonstrated when

background clutter is added to the scene. Now the tracking problem becomes much harder,

and a precisely tuned prediction is vital to prevent distractions by clutter features. A second

sequence was recorded, showing the ball bouncing in front of a highly cluttered backdrop

(�gure 5.5). Setting the bounce-transition parameters as before, but reducing �

h

to 3 pixels,
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(a) �

h

= 4pixels (b) �

h

= 4pixels (c) �

h

= 25 pixels

Figure 5.4: A single-state model requires higher driving noise for successful track-

ing than an equivalent mixed-state model. The red outline shows the estimated po-

sition of the ball. Thin curves show high scoring Condensation samples from a set of

N = 500. Figure (a) shows the mixed-state model with �

h

= 4 pixels; yellow samples are

the result of default states y = 1 and green are bounce states y = 2. Figure (b) shows that

the single-state model with �

h

= 4 pixels loses track of the ball, while in �gure (c) the single-

state model has �

h

= 25 pixels and manages to track successfully. Detail of a single �eld is

shown | the ball was released above the top of the visible image. The smearing of the ball

is due to motion blur which is not modelled explicitly, so the tracker is equally sensitive to

the leading or trailing edge, as shown in �gures (a) and (c) respectively.
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the mixed-state model again tracked successfully. The single-state model with �

h

= 3pixels

tracked the ball on its initial descent as before, but lost lock once more at the moment of

the �rst bounce. This time, increasing �

h

to 8 pixels (or any higher value) caused the single-

state model to be distracted by clutter almost immediately, as shown in the �gure. While

the mixed-state tracker continued to follow the ball throughout the sequence, misalignments

are evident in the �gure, and chapter 7 discusses one method for reducing this problem.

5.3 A three-state model for freehand drawing

If a set of gestures can be discriminated according to their characteristic motions, they

can be included in a mixed-state tracker as discrete states. The tracker will automatically

switch into whichever state best describes the motion at a given time, thus improving

tracking performance as described in the previous section, and also providing simple gesture

recognition as a side-e�ect. To investigate this approach, a tracker was constructed which

could form the basis of the back-end of an interactive drawing package. The goal is to track

the outline of a hand as it draws with a pen. Three motions are included | a general line-

drawing state, a stationary state, and a specialised \scribbling" state which corresponds to

the rapid back-and-forth motion used when �lling a region. The intention is that a sketching

package driven with the tracked data could draw lines as indicated by the output of the

drawing state, and then perform an accurate 
ood-�ll to replace the crude scribbles when a

solid block is required and the scribbling state is activated. The stationary state is included

because otherwise pauses in motion can be misinterpreted as scribbles of zero amplitude.

A specialised observation density was constructed for the hand tracker to take advan-

tage of the known image properties of a hand drawing with black marker pen on a white

page. While thresholding is not reliable enough to separate the hand from the background,

especially under variable lighting conditions, it is clear that the hand-coloured pixels are

clustered around mid-grey, and the pixels on the page form two clusters, one around white

and one around black. A distribution was accordingly constructed to represent this in-

formation, consisting of a single Gaussian N(�

f

; �

f

) for foreground pixels and a mixture

N(�

b1

; �

b1

)+N(�

b2

; �

b2

) for the background. In all of the sequences used, the right edge of

the hand was in slight shadow, so one set of Gaussian coe�cients was used for the left hand-

edge and �ngers and another for the right hand-edge. The coe�cients were set manually as

shown in table 5.1.
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(a) �

h

= 3pixels (b) �

h

= 3pixels (c) �

h

= 8pixels

Figure 5.5: Background clutter distracts a single-state tracker. The red outline

shows the estimated position of the ball. Thin curves show high scoring Condensation

samples from a set of N = 1500. Figure (a) shows the mixed-state model with �

h

= 3 pixels;

yellow samples are the result of default states y = 1 and green are bounce states y = 2.

Although the estimate is not perfectly aligned in this �eld, there are su�cient samples in the

correct alignment that tracking continues successfully. Figure (b) shows the result of using

a single-state model with �

h

= 3 pixels; the ball is tracked in its initial descent, but lock is

lost following the �rst bounce. Increasing the single-state model �

h

to 8 pixels, shown in (c),

causes the background clutter to distract tracking almost immediately, before the ball has

started to fall. The camera shutter speed is faster in this experiment than for �gure 5.4, to

reduce motion blur since the addition of clutter makes tracking much harder. The ball was

released near the top of the visible image.
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�

f

�

f

�

b1

�

b1

�

b2

�

b2

unshadowed 120 14.1 60 20 225 20

shadowed 90 14.1 60 20 180 20

Table 5.1: Gaussian coe�cients for foreground and background pixels in hand

images. Values are in units of grey-level intensity.

The observation density was then designed to re
ect these intensity distributions. Each

search line is hypothesised to lie half inside the object and half over the background, and it

was assumed that along the interior half of a search line, each pixel is independently drawn

from the foreground distribution, and along the exterior half each pixel is independently

drawn from the background distribution. This leads to the following density:
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�

and y

m

is a penalty constant which is set to 1 if an edge is detected in the direction of

the normal at the position s

m

and 0:3 otherwise. This observation density is e�ective, but

it would be more satisfactory to learn the parameters from sample images. Also, it would

be preferable to model the dependence between adjacent pixel values along the search line,

and between the pixel values near the hypothesised curve position and the presence of an

edge. It may be possible to learn a model for an entire line, perhaps in the form of a Hidden

Markov Model which proceeds from state Hand ! Edge ! Background. The problem of

designing observation densities is considered further in section 8.2.

A three-state (N

S

= 3) model was built, where y = 1 corresponds to default motions of

the hand, y = 2 is a stationary state, and y = 3 corresponds to a scribbling motion, which

is e�ectively a high-frequency oscillator with its axis close to the horizontal direction. As
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before, the restriction p

ij

� p

j

was made. Six training sequences were used to construct

the models. The �rst, 2800 �elds (56 seconds) long, is of slow hand-motions against an

uncluttered background (a pen was held in the hand, but with the lid on to prevent lines

appearing and acting as clutter). The second, 2400 �eld (48 second) sequence shows faster

motions and this time the pen was used to draw lines, so the clutter was severe by the end

of the sequence. The last four sequences, between 2000 �elds (40 seconds) and 2800 �elds

(57 seconds) long, show pictures being drawn, and no attempt was made to use gentle hand-

motions, so from time to time high image velocities (up to 25 pixels per �eld) are present.

The training sequences were recorded at di�erent times, and although some attempt was

made at standardising the conditions, the camera angle and lighting varied slightly from se-

quence to sequence. Portions of each of the training sequences were hand-labelled as general

motions or scribbling motions, and used to train ARP models as described in section 2.5.1

on page 29. A principal component shape-space was built for the hand as in section 2.3

on page 22; the construction of the shape-space and motion models was performed in par-

allel, since the output of the tracker is a useful diagnostic to �nd viewing angles of the

hand which are not represented in the shape-space. The drawing model was bootstrapped

from the training sequences, starting with the clutter-free sequence. The scribbling model

was bootstrapped from the fully-trained drawing model. Ultimately the PCA space used

was 12-dimensional (translation was explicitly added to a 10-dimensional space of shape

variations), constructed from 80 example views. Of the example views, 15 were initially

selected by eye and the B-splines constructed using an interactive drawing package. The

remaining views were created by taking the slightly misaligned output of a tracker and

correcting the B-spline using the drawing package, a less time-consuming job than drawing

from scratch. The B-splines are quadratic, and consist of two line segments, of �ve and

seven spans respectively. The transition probability matrix, set manually, was

T =

0

@

0:9800 0:0015 0:0185

0:0850 0:9000 0:0150

0:0050 0:0150 0:9800

1

A

which re
ects the composition of a typical drawing | most of the time is spent performing

default, \drawing" motions (y = 1), but there are occasional pauses (y = 2) of short

duration, and less frequently somewhat longer periods of scribbling (y = 3). Also, scribbling

motions are more likely to end with a pause than go straight into a drawing motion.

Since the scribbling motion is an oscillator with small spatial extent, a slight variant of
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the standard SDE model was used which allows the means of successive oscillations to di�er

(Reynard et al., 1996). The concept of a \scribble unit" is introduced, which is a maximal

consecutive subsequence of states fX

i

g all having discrete label y = 3 | informally this is

an entire scribbling motion, from start to �nish. Each scribble unit is considered to have

a �xed mean, but distinct scribbles have distinct means. This is encoded in the model by

augmenting scribble-state samples with an extra vector denoting the mean:

X

scribble

= (

~

X; 3;x):

The x and y translation components of the mean vector x are initialised to be equal to the

current position (

~

X)

(x;y)

when a scribble unit begins, and x is inherited from the previous

sample over the course of that scribble unit. The algorithm to implement the scribble

prediction is shown in �gure 5.6. When learning the SDE model for the scribble state y = 3

To sample from a sub-process density in the scribble state y = 3,

given a base sample s

0

t

(n)

:

1. Fix the scribble mean x

(n)

t

:

Either: s

0

t

(n)

= (
~
s

0

t

(n)

; 1) or s

0

t

(n)

= (
~
s

0

t

(n)

; 2), so initialise a

scribble unit with the learned scribble model mean, translated

to the current sample (x; y) position.

(x

(n)

t

)

(x;y)

= (
~
s

0

t

(n)

)

(x;y)

;

or: s

0

t

(n)

= (
~
s

0

t

(n)

; 3;x

0

t

(n)

), so continue an existing scribble unit

x

(n)

t

= x

0

t

(n)

:

2. Generate an IID normal sample vector !

(n)

t

3. Calculate the new shape-space vector

~
s

(n)

t

= A
~
s

0

t

(n)

+ (I �A)x

(n)

t

+B!

(n)

t

4. Store the new sample s

(n)

t

= (
~
s

(n)

t

; 3;x

(n)

t

)

Figure 5.6: The sampling scheme for a scribbling predictor. Each \scribble unit" has

a unique mean | this mean is �xed when a model switch y

t�1

= 1! y

t

= 3 or y

t�1

= 2!

y

t

= 3 occurs, and inherited from the previous sample for transitions y

t�1

= 3! y

t

= 3.

from several example sequences, each sequence was �rst translated to have zero mean. The
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stationary model is of the same, variable mean, form as the scribble model.

To test the generality of the model, a new sequence was recorded, which was not used

to provide any training data. This was a 1250 �eld (25 second) sequence showing a draw-

ing of a house (�gure 5.7). Because of the high image velocities combined with the high

dimensionality of the shape-space, 15000 samples were needed for robust tracking, which

runs at approximately 0.33Hz on an SGI O2 R5000 180MHz workstation. Tracking was

accurate throughout, and sample frames are shown in the �gure. The classi�cation of mo-

tion by model-switching was also accurate, as can be seen from �gure 5.8. Occasional short

sequences of ambiguous motion are mis-classi�ed, but none longer than a few �elds. The

onset and end points of scribble gestures are also found surprisingly accurately, although

there is a slight lag in some of the switches, which is to be expected since the motion is

not unambiguous until at least a quarter of an oscillatory period has elapsed. Figure 5.9

(taken from one of the test sequences) shows that signi�cant motion of the background is

discounted by the tracker. The misalignment of the thumb is due to the fact that the test

sequence shown was recorded from a camera angle which deviated from those in the other

sequences. As a result, there were persistent small misalignments when tracking that se-

quence using the �nal drawing model, although the hand was robustly followed throughout.

A larger training set may reduce this problem.
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5.04 s 5.72 s

8.00 s 11.20 s

20.40 s 25.00 s

Figure 5.7: A mixed-state tracker switches between models according to the

motion of a drawing hand. A 25 second (1250 �eld) sequence was correctly tracked

throughout using N = 15000 samples. The contour is drawn in red during default motions,

green while scribbling, and blue while stationary. Tracking is accurate, although the shape-

space does not quite model the knuckle of the fore�nger. Note the subtle shape variation

within the 12-dimensional shape-space as the thumb and fore�nger move to hold the pen in

di�erent positions.
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Figure 5.8: Model switching provides an accurate classi�cation of motion. Red dots

show drawing motion (y = 1), blue dots a stationary hand (y = 2) and green dots denote

scribbling (y = 3). The vertical dashed lines show the times that the scribbling gestures

started and ended, found by manual segmentation. The vertical axis shows the x translation

coordinate of the hand model in pixels.
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Figure 5.9: Signi�cant motion of the background does not distract tracking. An

interlaced image frame shows large inter-�eld motion of the background as the paper is

shifted to accommodate a more comfortable drawing position. Since the tracker does not

rely on any explicit background subtraction or inter-�eld image di�erencing, tracking is not

a�ected.



6

Importance sampling and

reinitialisation

The tracking framework described in chapter 2 and used in the results presented thus

far can be informally characterised as high-level and thereby distinguished from low-level

tracking systems. Low-level approaches include \blob trackers" (Wren et al., 1997; Kjeld-

sen and Kender, 1996) and systems which track sets of point features (Torr and Murray,

1994; Costeira and Kanade, 1995). Blob trackers perform low-level processing, for example

colour segmentation, usually on low-resolution (subsampled or decimated) images, and are

fast and robust but convey little information other than object centroid. Rigid object de-

formations can be tracked by matching point correspondences frame to frame (Torr, 1997),

but this relies on a rich set of point features on the object of interest, and segmenting the

sets of points into coherent objects is challenging. The alternative is to use higher-level

information, whether by using outline curves as described in this thesis or modelling ob-

jects with speci�c grey-level templates (Black and Jepson, 1996) which may be allowed to

deform (Hager and Toyama, 1996). By including high-level motion models (Blake et al.,

1995; Baumberg and Hogg, 1995b) these trackers can follow complex deformations in high-

dimensional spaces, as we have seen. The preceding two chapters have highlighted a tradeo�

between speed and robustness, however. Kalman-�lter based contour trackers which run

in real time are very susceptible to distraction by clutter, and correlation-based systems

are vulnerable to changes in object appearance and lighting, and rapidly slow down as the

space of deformations increases in complexity. The Condensation trackers described in
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chapters 3 and 5 are highly robust to clutter but thereby sacri�ce real-time performance,

and this is evident also in other clutter-resistant systems (Lowe, 1992). The high-level

approaches also tend to economise on processing time by searching only those regions of

the image where the object is predicted to be. This diminishes robustness to unmodelled

motions, and also precludes natural extensions of the trackers for the initialisation stage

when the prior for object position may be broadly distributed over the whole image. The

di�culty of initialisation is compounded when the dimension of the tracking space increases,

since it is rapidly impractical to perform an exhaustive search for the object.

This chapter describes an extension to Condensation, Icondensation, to bridge the

gap between low-level and high-level tracking approaches. An implementation is demon-

strated which uses colour segmentation to �nd skin-coloured blobs in a decimated image,

and feeds this information to a contour tracker specialised for hands. The techniques used,

however, apply to the general sensor fusion problem of augmenting a tracker operating

with one measurement modality to use information from an auxiliary measurement source.

Tracking is achieved by extending the Condensation �lter to incorporate the statistical

technique of \Importance Sampling" (Ripley, 1987). Importance sampling o�ers a mathe-

matically principled way of directing search, combining prediction information based on the

previous object position and motion with any additional knowledge which may be available

from auxiliary sensors. This combination confers robustness to temporary failures in one of

the measurement processes, and allows the tracker to take advantage of the distinct qualities

of di�erent information sources. In the hand-tracking system presented here, for example,

colour segmentation allows rapid initialisation and robust tracking of gross motions, while

the contour tracker gives �ne-scale position and shape information as well as maintaining

lock on the object when colour blobs merge or momentarily disappear. The hand-tracker

based on Icondensation, while less able to represent subtle hand gestures than that of

the previous chapter, operates comfortably in real time (30 or 60Hz) on a desktop work-

station (SGI O2 R5000 180SC). The speed improvement is due partly to a reduction in

the required number of samples as a result of using importance sampling, and partly to a

careful implementation which is discussed in section 6.2.
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6.1 Importance sampling

In the standard formulation of the Condensation algorithm, positions of samples s

(n)

t

are

�xed in the prediction stage using only the previous approximation to the state density

f(s

(n)

t�1

; �

(n)

t�1

)g and the motion model p(X

t

jX

t�1

). The portions of state-space (and thus the

image Z

t

) which are to be examined in the measurement stage are therefore determined

before any measurements are made. This is appropriate when the sample-set approxima-

tion to the state density is accurate. In principle, as the state density evolves over time,

the random nature of the motion model induces some non-zero probability everywhere in

state-space that the object is present at that point. With a su�ciently good sample-set

approximation this would tend to cause all areas of state-space to lie near some samples, so

even motions which were extremely unlikely given the model would be detected, and could

therefore be tracked. In practice, however, the �nite nature of the sample-set approximation

means that all of the samples will be concentrated near the most likely object positions as

in �gure 6.1. There may be several such clusters corresponding to multiple hypotheses, but

measure

predict

Figure 6.1: Unexpected motion results in an ine�cient sample distribution. The

motion model has predicted that the object would remain at the left, but it has actually

moved right. As a result most of the samples lie away from peaks of the observation density.

Increasing the number of samples N would increase the number of samples near the peak

of the observation density, making tracking more likely to continue successfully, but at the

cost of increasing computational load.
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in general each cluster will be fairly localised, which in fact is precisely the behaviour which

permits an e�cient discrete representation of high-dimensional state spaces. The result is

that large areas of state-space contain no samples at all. In order to robustly track sudden

movements the process noise of the motion model must be arti�cially high, thus increasing

the extent of each predicted cluster in state-space. To populate these larger clusters with

enough samples to permit e�ective tracking, the sample-set size must be increased, and the

algorithm therefore runs more slowly. This was evident in section 5.3 on page 85, when

N = 15000 samples were used for the hand-tracker to permit robust tracking in the face of

sudden large accelerations of the hand. A much smaller number of samples (N = 1500) is

adequate to track the deformations of the tracker in section 5.3 as long as hand motions

are slow, and the larger sample-set size is used primarily to perform search over the image

in the case of sudden unexpected hand motions. Various techniques have been proposed to

improve the e�ciency of the representation in random sampling �lters (Gordon et al., 1993;

Gordon and Salmond, 1995), and these are discussed in section 8.3, but to our knowledge

none have been advanced which draw on information available from alternative sensors.

Importance sampling (Ripley, 1987) is a technique developed to improve the e�ciency

of Monte-Carlo methods, of which factored sampling is one. It applies when auxiliary

knowledge is available in the form of an importance function g(X) describing which areas

of state-space contain most information about the posterior. The idea is then to concen-

trate samples in those areas of state-space by generating sample positions s

(n)

from g(X)

rather than sampling fairly from the prior p(X). The desired e�ect is to avoid as far as

possible generating any samples which have low weights, since they are \wasted" in the

factored sampling representation as they provide a negligible contribution to the posterior.

A correction term f=g must be added to the sample weights giving

�

(n)

=

f(s

(n)

)

g(s

(n)

)

p(ZjX = s

(n)

) where f(s

(n)

) � p(X = s

(n)

) (6.1)

to compensate for the uneven distribution of sample positions. This correction term ensures

that, as N ! 1, importance sampling has no e�ect on the consistency of the particle-set

representation; the desired posterior is still correctly approximated. A high value of g(X)

implies a high probability that an importance-sampled particle will be chosen at the position

X (a sampling bias towards X, that is), and so �

(n)

for that particle is downweighted by

the factor of g(�) in the denominator of (6.1) to correct this bias. Conversely, a high

value of f(X) implies a high probability of placing a particle at X in the true posterior
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representation, and the f(�) in the numerator of (6.1) re
ects this.

Any importance function could be chosen (subject to some weak constraints given in

(Doucet, 1998)) and if N is su�ciently large then ~p(XjZ) will be a good approximation

to p(XjZ). The purpose of importance sampling is to reduce the variance of the factored

sampling procedure as an estimator for p(XjZ) given �xed N and so improve the accuracy

of ~p(XjZ) when N is small. Since samples are drawn from g(X) it plays the part of a

probability density, but note that it does not necessarily correspond to the distribution of

any particular random variable.

A typical Bayesian approach to sensor fusion would be to combine measurements from

the various sensors in the Z

t

, weighted according to their inverse variances. This is only

possible, however, when the statistical dependencies between the measurements are under-

stood, and in practice it is often assumed that sensors produce independent measurements.

The application in this chapter combines measurements made with di�erent modalities but

from the same underlying image, so it is expected that such an independence assumption

would be invalid. Instead of the traditional sensor fusion approach, therefore, importance

sampling allows measurements to be combined in a Bayesian framework even when no

knowledge at all is available about their dependence. The tradeo� is that the symmetry

between sensors is broken, since the measurements used to de�ne the importance function

are not included in the overall model, and this may result in some genuine independent

information being discarded.

Importance sampling can be applied in the context of Condensation sampling, and we

denote this extension Icondensation. Now the importance function at time t is denoted

g

t

(X

t

). In standard Condensation as described in section 3.4 on page 40, sample positions

are drawn from the density

f

t

(s

(n)

t

) � ~p(X

t

= s

(n)

t

jZ

t�1

)

=

N

X

j=1

�

(j)

t�1

p(X

t

= s

(n)

t

jX

t�1

= s

(j)

t�1

): (6.2)

Note that while the sample set f(s

(n)

t

; �

(n)

t

)g provides a discrete point-representation of

a distribution, the prediction density ~p(X

t

jZ

t�1

) is a mixture of continuous density ker-

nels shaped by p(X

t

jX

t�1

), representing the dynamical model. Instead of sampling from

~p(X

t

jZ

t�1

), samples s

(n)

t

can instead be drawn from g

t

(X

t

) and then the weights need to
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be rede�ned as

�

(n)

t

=

f

t

(s

(n)

t

)

g

t

(s

(n)

t

)

p(Z

t

jX

t

= s

(n)

t

): (6.3)

The e�ect of the correction ratio is to preserve the information about motion coherence

which is present in the dynamical model. Although the samples are positioned according

to g

t

, the distribution approximated by f(s

(n)

t

; �

(n)

t

)g still generates p(X

t

jZ

t

). Importance

sampling is again intended to improve the e�ciency of the sample-set representation, but

does not change the probabilistic model (�gure 6.2). It should be noted that (6.2) imposes

measure

predict

Figure 6.2: Importance sampling improves the e�ciency of the sample-set rep-

resentation. The motion model has predicted that the object would remain at the left, and

positioned white samples accordingly. In fact the object has moved right, and the black sam-

ples are positioned according to an importance density g which re
ects this. The discrete

set contains the same number of samples N as in �gure 6.1, but now the the approximation

to the density is more accurate.

a restriction on the form of dynamical model which can be used; for Condensation it is

enough to be able to sample from p(X

t

jX

t�1

) but in the Icondensation algorithm this

density must also be evaluated. The motion models in this thesis use Gaussians (chap-

ter 2) or mixtures of Gaussians (chapter 5) for this process density, and so evaluation is

straightforward. The sum in (6.2) must be evaluated in (6.3) for each n = 1; : : : ; N , which

changes the complexity of the algorithm from O(N) to O(N

2

). While this is a theoretical
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disadvantage, it has little e�ect in practice for the application described, since the time

expended on the calculation of (6.2) in an e�cient implementation, for practical values of

N , is dwarfed by other stages of the computation.

Variations of the importance sampling scheme

In practice the importance function g

t

will derive from a measurement process, so it may

be imperfect and thereby omit some likely peaks of p(Z

t

jX

t

). It is therefore prudent to

generate some samples using standard factored sampling and some by importance sampling

using g

t

. As long as ~p(X

t

jZ

t�1

) and g

t

do not simultaneously fail to predict the object

state, tracking will succeed.

It may be advantageous to augment the dynamical model to include some probability

q of reinitialisation | repositioning the object according to a prior which is independent

of past history Z

t

. This allows a tracker to lock on to an object entering the scene, or

rediscover an object which has been lost due to gross failures of measurements, perhaps

because the object moved while it was entirely occluded. The amended model is of the

form

~p

0

(X

t

jZ

t�1

) = (1� q)~p(X

t

jZ

t�1

) + qp(X

t

)

where p(X

t

) is the required initialisation prior. This is an application of mixed-state Con-

densation with two discrete states, and in later sections a hand-tracker model will be

demonstrated which is augmented to include a further two states. A mixed-state model

can be included in the importance sampling scheme by choosing with probability 1 � q to

generate samples as before (using importance sampling with probability r and standard

factored sampling with probability 1 � q � r) and with probability q to generate s

(n)

t

by

sampling directly from a prior distribution p(X

t

). In the absence of another initialisation

prior, the importance function, suitably normalised, can be used, so p(X

t

) / g

t

. A complete

sampling algorithm is shown in �gure 6.3.

6.2 Experiments with a real-time hand-tracker

The framework of Icondensation applies in principle to any parametric representation of

objects and their motion, and any form of importance function g

t

. The remainder of this

chapter describes a speci�c implementation of a real-time hand tracker, combining blob-
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Iterate

From the \old" sample set f(s

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng at time-step t�1, construct

a \new" sample set f(s

(n)

t

; �

(n)

t

); n = 1; : : : ; Ng for time t. The importance function

g

t

(X

t

) for time t is assumed to be known at this stage.

Construct the n

th

of N new samples as follows:

1. Choose the sampling method by generating a random number � 2 [0; 1),

uniformly distributed.

2. Sample from the prediction density ~p

0

(X

t

jZ

t�1

) as follows:

(a) If � < q use the initialisation prior. Choose s

(n)

t

by sampling from g

t

(X

t

)

and set the importance correction factor �

(n)

t

= 1.

(b) If q � � < q+ r use importance sampling. Choose s

(n)

t

by sampling from

g

t

(X

t

) and set �

(n)

t

= f

t

(s

(n)

t

)=g

t

(s

(n)

t

), where

f

t

(s

(n)

t

) =

N

X

j=1

�

(j)

t�1

p(X

t

= s

(n)

t

jX

t�1

= s

(j)

t�1

):

(c) If � � q + r use standard Condensation sampling. Choose a base

sample s

0

t

(n)

as in step 1 in �gure 3.6 on page 44, then choose s

(n)

t

by

sampling from p(X

t

jX

t�1

= s

0

t

(n)

) and set �

(n)

t

= 1.

3. Measure and weight the new position in terms of the image data Z

t

and the

importance sampling correction term:

�

(n)

t

= �

(n)

t

p(Z

t

jX

t

= s

(n)

t

)

then normalise multiplicatively so that

P

n

�

(n)

t

= 1 and store as f(s

(n)

t

; �

(n)

t

)g.

Figure 6.3: Icondensation: Condensation with importance sampling and reini-

tialisation.
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tracking with a contour model. First, a crude colour-segmentation technique is described

which is used to construct the importance function g

t

(X

t

).

6.2.1 Finding skin-coloured blobs

Previous researchers (Kjeldsen and Kender, 1996; Graf et al., 1996) have noted that human

skin can be e�ectively distinguished in a typical o�ce scene using colour segmentation, and

so this method is adopted here. Training images of hands are used to construct a colour

discriminant based on a Gaussian prior in (r; g; b) space which expresses the probability that

a given pixel is skin-coloured. The prior is clipped with an intensity threshold to ensure

that very dark pixels are not classi�ed as skin, giving the discriminant d

C

(r; g; b) as:

d

C

=

8

>

>

>

>

<

>

>

>

>

:

10000 if r + g + b < 192

�

r

0

g

0

b

0

�

0

B

@

0:576696 0:761244 �0:176944

0:761244 1:374758 �0:224989

�0:176944 �0:224989 0:061377

1

C

A

0

B

@

r

0

g

0

b

0

1

C

A

otherwise

where

0

@

r

0

g

0

b

0

1

A

=

0

@

r � 110:861

g � 89:5033

b� 70:8975

1

A

where smaller values of d

C

imply a pixel is more likely to be skin-coloured. Blob-detection

is performed by taking the input image and decimating to give 32�24 pixels per �eld, then

evaluating the colour discriminant for each pixel. A 2� 2 moving block average is applied

to the image to reduce noise, and then pixels are grouped using a 
ood-�ll with hysteresis

(Foley et al., 1990), beginning a �ll when d

C

< 27:5 and �lling all contiguous pixels where

d

C

< 35. An example image and the segmented output are shown in �gure 6.4. The

technique has been found to be very e�ective in separating skin colour from background,

and works over the variation in lighting conditions from day to night in our o�ce. Let B

be the number of blobs detected, then the mean of each blob is computed as a coordinate

b

0

k

in the original image, and a two-dimensional importance function ~g

t

is then de�ned to

be a mixture of Gaussians over R

2

~g

t

(x

trans

) =

B

X

k=1

�

k

N(b

k

;�

B

)

where b

k

= b

0

k

+
�
x

B

, and
�
x

B

and �

B

are the mean and covariance respectively of the o�set

from the blob position to the centroid of the contour describing the hand. These are learned

by following a user's hand against an uncluttered desk using a Condensation tracker and
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Figure 6.4: Colour segmentation allows the detection of skin-coloured blobs. Cir-

cles on the input frame (left) show the centres of blobs detected using colour-segmentation

and a 
ood-�ll. The output of the colour discriminant on a 32�24 pixel subsampled �eld of

the original image is shown scaled (middle) so that white corresponds to a high probability

of skin-colour. The output after convolution and blob-detection (right) shows white areas

belonging to blobs.

comparing the output of the blob segmentation with the centroid of the tracked contour.

The mixture weights �

k

will be discussed in the next section. A hybrid sampling scheme

is now required since the importance function is de�ned only over translations, and this is

outlined below.

6.2.2 A contour tracker for hands

As in section 2.5 on page 28, a second-order state-space is used to represent the hand, but

now the parameterisation is non-linear, giving

X

t

=

�

x

t�1

x

t

�

where x

t

= (x

t

; y

t

; �

t

; r

t

; �

t

)

T

:

Here x

t

represents a Euclidean similarity transform applied to a spline template Q

0

so

Q =

�

x

t

1

y

t

1

�

+ r

t

�

cos �

t

� sin �

t

sin �

t

cos �

t

��

�

t

Q

x

0

Q

y

0

�

:

The extra parameter �

t

2 f�1; 1g is a discrete label which determines whether the template

is left- or right-handed | Q

0

is re
ected about the y-axis for the right hand. The left{

right parameter �

t

is constant according to the motion model, and can only change as a

result of a reinitialisation, and so the tracker e�ectively uses a four-state model (tracking

or reinitialising either the left or the right hand) shown in �gure 6.5.

The motion model is a second-order ARP where each of the four dimensions of the

similarity is modelled by an independent one-dimensional oscillator. The oscillators are

speci�ed (Blake and Isard, 1998) by parameters de�ning a damping constant �, a natural
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1 2

3 4

Figure 6.5: The hand-tracker uses a four-state discrete/continuous motion model.

States 1 and 2 denote tracking the left and right hand respectively, and states 3 and 4

correspond to initialising a sample to start tracking with either the left or the right model.

frequency f and a root-mean-square average displacement � as described in section 2.5 on

page 28. Sensible default parameters for the oscillators are chosen by hand and are shown

in table 6.1.

� (s

�1

) f (Hz) �

x 3 0 100 pixels

y 3 0 100 pixels

� 5 0 0.5 rad

r 5 0 0.1

Table 6.1: Oscillator coe�cients for a hand-tracker.

As explained in section 6.2.1, the importance function ~g

t

is de�ned here only over the

space of x{y translations, being the output of a crude blob-tracker. The state-space de-

composes into a translation subspace x

T

t

= (x

t

; y

t

)

T

and a deformation subspace x

D

t

=
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(�

t

; r

t

; �

t

)

T

. Modi�cations to steps 2(a) and 2(b) of �gure 6.3 can now be made to imple-

ment a hybrid sampling scheme. For initialisation in step 2(a), the translation component

s

(n)T

t

is sampled from ~g

t

and the deformation component s

(n)D

t

is sampled from a �xed prior

p

D

(x

D

) which is taken to be Gaussian in �

t

and r

t

and assigns equal probabilities for left and

right to �

t

, then s

(n)

t

= s

(n)T

t

�s

(n)D

t

. The hybrid importance sampling step 2(b) proceeds as

follows. First generate a sample s

0

t

(n)

= s

0

t

(n)T

�s

0

t

(n)D

using standard Condensation sam-

pling as in step 2(c). Then choose s

(n)T

t

by sampling from ~g

t

and set s

(n)

t

= s

(n)T

t

� s

0

t

(n)D

.

Finally the importance correction factor �

(n)

t

is replaced by �

(n)T

t

= f

T

t

(s

(n)

t

)=~g

t

(s

(n)

t

), where

f

T

t

(s

(n)

t

) =

N

X

j=1

�

(j)

t�1

p(X

T

t

= s

(n)T

t

jX

t�1

= s

(j)

t�1

):

It remains to specify the mixture weights �

k

for g

t

(X

t

). One reasonable choice is to set

�

k

= 1=B, and apportion samples equally in the vicinity of each blob. Since the motivation

for importance sampling is to avoid generating samples with low weights, it may be prefer-

able to increase �

k

for blobs which are near to many predicted sample positions. This can

be done approximately by setting �

k

/ f

t

(b

k

), and later results are produced using these

weights.

The prior distribution over translation for reinitialisation is chosen to be the distribution

obtained by sampling from g

t

with �

k

= 1=B for all k. The parameters � and r are chosen

from a suitable Gaussian prior density, with parameters set by hand, and � has an equal

chance of being left- or right-handed. When k = 0 no importance or reinitialisation samples

are generated, and all of the computing time is spent on standard Condensation samples.

The sampling scheme is illustrated diagrammatically in �gure 6.6.

6.2.3 The measurement process

Having detailed the dynamical model it remains to specify the measurement density p(ZjX).

The measurement density is approximated by examining a set of points z

m

for m = 1 : : : M

which lie on the curve outline, where the normal to the curve at z

m

is n

m

. First of all, edge-

operator convolutions are taken at z

m

in the x and y directions, and the dot product of these

is taken with the normal direction n

m

to �nd a directed edge strength which is scaled and

interpreted directly as a log probability p

m

. This is similar to the edge-detection procedure

in section 3.6.2 with a normal-line length � = 1pixel, but more e�cient to compute. When

the edge strength is above a certain threshold an additional colour calculation is made

to examine the pixels just inside the contour. This increases p

m

when the area inside the
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(a) (b)

Figure 6.6: Samples are divided between standard Condensation samples, impor-

tance samples, and reinitialisation samples. Green samples are standard Conden-

sation samples, blue samples are importance samples and red samples are reinitialisation

samples. The illustration shows two blobs in each image which are roughly skin-coloured;

blue and red samples are clustered around each blob. Note that the red reinitialisation sam-

ples use a broad prior for scale and rotation, whereas the blue importance samples use motion

coherence and predict a tighter distribution for scale and rotation near that of the the pre-

vious timestep. In (a) the hand is near the predicted position, so the green Condensation

samples are clustered around it. In (b), however, the hand has moved unexpectedly, so all

the green samples are far from it, which would cause a standard Condensation tracker

to fail. An Icondensation tracker will succeed due to the presence of importance samples

near the hand-coloured blob.
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curve scores highly according to the skin-colour discriminant, and decreases it when it scores

poorly. Independence of the measurement points is assumed, so the density is given by

log p(Zjx) = const +

X

m

p

m

:

Constants are set manually, and the density is somewhat ad hoc; determining a more rig-

orous measurement density, possibly learned from training images, is deferred to future

research. The general problem of designing suitable rigorous observation densities is con-

sidered in section 8.2.

6.2.4 Speed enhancements

Importance sampling has been presented as a mechanism to use complementary sources of

visual information to choose an e�ective set of positions in state-space for a �nite set of

N samples. Given the constraint of real-time operation, a certain amount of care in the

detailed implementation is necessary in order to maximiseN . Much of this consists simply of

standard code optimisation, but some parts of the algorithm can be redesigned for greater

e�ciency. Firstly, the deterministic base-sampling technique described in section 3.4 on

page 40 is used and this cuts down on the prediction calculations, since it allows predictions

from a given base sample to be made consecutively. This o�ers a saving in calculating the

deterministic portion of the prediction, which need only be done once per base sample.

Practical experience shows that this can lead to signi�cant economy, since typically only

10% of samples may have high enough weight to be used as a base. Experiments were

also done to precompute a large number of vectors of random Gaussian noise w

k

so that

the shaped noise terms Bw

k

from (2.12) on page 28 could be computed o�ine, but it was

found that on the experimental system used, which has a slow memory system relative to

its 
oating point performance, this modi�cation resulted in reduced tracking speed, and it

was abandoned.

Software pro�ling shows that most of the tracker's computation is expended, as might

be expected, on calculating the measurement density. It has been found that a signi�cant

speed improvement can be gained by presorting the measurement points in raster order

before performing the convolution and colour-segmentation calculations of section 6.2.3.

This has the advantage, as for the base samples, that identical measurement points are pro-

cessed consecutively, which cuts down on the number of convolutions (typically the number

of distinct measurement points is just over half of the total number of points). Clearly, per-
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forming the sort generates a large overhead, and in fact pro�ling reveals that typically 30%

of computation time is spent sorting compared with about 50% making the measurements.

This might seem to almost cancel the performance improvement from sorting, however the

speedup on an SGI O2 is signi�cantly greater than implied by these numbers, since evalu-

ating points in raster order allows much of the computation to take place on data which is

already present in the cache, leading to a signi�cant e�ciency increase on this architecture

over using unsorted points.

6.3 The tracker in operation

The hand-tracker has been implemented on an SGI O2 R5000 SC180 entry-level desktop

workstation. The results shown were produced using N = 400 samples, which allows the

tracker to run comfortably in real-time (30Hz, using every other NTSC �eld). The number

of samples can be increased to approximately N = 575 before any frames are dropped.

Acceptable performance is obtained with N = 150 samples, and this runs comfortably

at the �eld-rate of 60Hz, although there is no noticeable bene�t from using the additional

�elds. Experiments in previous chapters have bene�ted from using every �eld since this cuts

in half the maximum motion of an object between sampled timesteps. Here large object

motions are catered for using the importance sampling framework so a high sampling rate

is less important. The main observed di�erences when using a smaller number of samples

are a slight jitter when the hand is stationary and a longer time taken before the system

reinitialises. As the number of samples is reduced below N = 150 the tracker begins

to be distracted by clutter, although reinitialisation still functions to recover from these

distractions.

The initialisation behaviour of the tracker is shown in �gure 6.7. Initially the hand on

the left is being tracked, and the spatial coherence inherent in the motion model means that

the other blobs in the scene do not distract the tracker. When the thumb and fore�nger

are retracted, the shape no longer �ts the template as accurately, and tracking reinitialises

on the other hand within half a second. This behaviour corresponds to state transitions

2 ! 3 ! 1 in �gure 6.5. Figure 6.8 demonstrates successful tracking at high speed, with

interlace shown to indicate image velocities. Even if the hand makes a sudden movement

which is not predicted by the motion model, the blob tracker will detect the new position,

and importance samples will be generated in the vicinity of the hand allowing the motion
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(a) (b)

(c) (d)

Figure 6.7: The tracker reinitialises when one hypothesis takes precedence over

another. While the user's right hand �ts the template well (a) the motion coherence in the

dynamical model ensures that the tracker remains locked on (discrete state 2 in �gure 6.5).

When the shape no longer �ts the template (b) the probability of reinitialising to another

hypothesis increases. After 5 frames (1/6 s) the tracker has switched to the neighbourhood of

the left hand, selecting the left-handed template (discrete state 3 followed by 1), and another

5 frames later, a total of 1/3 s from the time that the right hand no longer �t the template,

the tracker has locked on to the user's left hand (discrete state 1). Detected blobs are shown

as circles, and N=400 samples are used.
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to be tracked. Figure 6.9 shows the advantage of using outline information as well as colour

Figure 6.8: Tracking follows high-speed motions. Both �elds of a frame are shown,

and interlacing artifacts demonstrate the rapid translation of the hand. The tracker is using

N=400 samples.

blob segmentation. The hands are adjacent, so their blobs merge, yet tracking continues to

distinguish between the hands.

6.4 Extending the tracker for multiple users

The hand tracker described so far is specialised to a single hand shape, encoded in the

template Q

0

. This requires the user's hand to be held fairly rigidly in the template pose,

and necessarily means that some users' hands will �t the template better than others'. The

main problem with an ill-�tting template is slow re-initialisation, but it also increases the

chance of clutter distractions. It would be desirable, therefore, to allow some variation

in Q

0

. A shape-space of hand-deformations was therefore established by using PCA on

sequences of images collected from several subjects. Each subject placed his or her left

hand in a reference position and orientation, with thumb and fore�nger outstretched, and

then made small movements to represent the variation of poses in which that user's hand

will be presented to the system. These movements were recorded by a Condensation

tracker, the spline positions from the separate sequences were concatenated, and PCA

was used to �nd a six-dimensional space of deformations. In the interests of real-time

tracking, it is not desirable to increase the dimension of x

t

from 4 continuous Euclidean

similarity parameters to 10 for rigid transformations plus deformation. The solution adopted
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Figure 6.9: Tracking is robust to failures of colour segmentation. When the hands

move close to each other, their colour-segmentation blobs merge, giving a mean value (circle)

between the hands. The contour tracker continues to follow the left hand using motion

coherence and edge information, using N=400 samples.

was to run two trackers, one in the Euclidean similarity space as before, and one in a

separate six-dimensional deformation shape-space with N

D

samples and parameter d

t

, so

that Q

0

= Q

0

+Wd

t

where Q

0

andW were estimated by PCA as in section 2.3 on page 22.

Since d

t

is expected to vary slowly (even while a single user is operating the tracker, the

hand shape may alter slightly as the user adjusts to a comfortable position), only a small

number of samples need be used in the deformation tracker, and good results are obtained

using N

D

= 50 samples. At each time-step, the trackers are run consecutively. First of all

d

t

is held �xed at d

t

=

^

d

t�1

to establish Q

0

= Q

0

+W

^

d

t�1

. The Euclidean transformation

tracker is then run, exactly as before, and an estimated Euclidean vector
^
x

t

is calculated

as in section 5.2 on page 81. Now the Euclidean transformation is held �xed at x

t

=
^
x

t

and the deformation tracker is run to estimate the new sample-set distribution for d

t

from

which

^

d

t

can be estimated. This procedure is not entirely satisfactory, since it prevents

a meaningful probabilistic interpretation of the state densities. It would be preferable to

�nd some way of combining the estimation of deformation and rigid motion in a consistent

Bayesian framework while keeping the economy of computation. It seems pro
igate to

allow an entire 6-dimensional linear space to represent hand deformations, as most of the

space consists of shapes which are very unlike a hand. It may be possible to collect a large

number (perhaps 20{100) of template shapes, and include them as further discrete states

in the model, thus relying on each user's hand being close to one of the example templates.
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Alternatively it may be possible to specify a non-linear parameterisation of the deformations

which is e�cient enough to allow the deformation space to be included directly with the

Euclidean similarity parameters in the main tracker. Despite this caveat, results using the

two-tracker system are promising. The deformation-space tracker was run as a standard

Condensation tracker using dynamics learned from the hand-shape training sequences.

The shape rapidly deforms to �t a hand as it enters the scene, and �gure 6.10 shows that

the tracker can adapt to di�erent hands as required.

Figure 6.10: The deformation tracker accommodates di�erent hands. Columns

show di�erent users. The lower images show tracked output approximately a second after

the hand was introduced into the scene. The left-hand user was included in hand-shape

training data, the other two were not. In this example N=400 for the Euclidean similarity

tracker and N

D

=50 for the deformation tracker.



7

Smoothing the output of a

Condensation �lter

Kitagawa (1996), along with his formulation of the Condensation algorithm, presented

two smoothing algorithms which allow the state X

t

at time t to be estimated in the light

of all of the measurement data in a sequence, rather than just the data up until time

t. This chapter presents an implementation of Kitagawa's smoothing algorithms in the

Condensation framework, and in doing so incorporates a signi�cant simpli�cation of one

of them which extends its use to a wider class of dynamical model. Smoothing highlights

a simpli�cation which has been made in the preceding chapters. One of the distinguishing

characteristics of the Condensation algorithm is that it represents multiple hypotheses

about object state in the form of a multi-modal state density. All of the known information

about the object is contained in the state density, and this information must be processed

in some way if a single estimated object position is required at each time-step. Previous

chapters have described calculating simple moments of the state density, in practice the

mean, for display purposes. This breaks down when the density has several peaks, and one

advantage of a smoothing �lter is that it tends to eliminate hypotheses which were unlikely

with hindsight. The result is that the smoothed density better approximates a uni-modal

density, and simple mean-estimation produces a more accurate representation of the density.

Smoothing can also be used as the basis of a learning algorithm for mixed-state models, and

this will be discussed in section 8.5. Note that here \smoothing" refers to the statistical

technique of conditioning the state density on both past and future measurements. It has
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nothing to do with the standard computer vision de�nition involving convolution with a

smoothing kernel, either spatially or temporally.

7.1 Smoothing the output of Condensation

Within the Condensation algorithm the conditional state density p(X

t

jZ

t

) encodes all

of the known information about the object state given the current measurement history

Z

t

� (Z

1

; : : : ;Z

t

). Once tracking has completed it may be desirable to return, in batch-

mode, to calculate p(X

t

jZ

T

), the state density for each time-step given the entire measure-

ment history up until time T � t. This is particularly valuable in the case of temporary

distraction, when the state density splits for a few time-steps into several distinct trajec-

tories. During real-time

1

tracking, it is impossible to reliably determine which of these

competing hypotheses corresponds to the true object trajectory, however all but one of the

trajectories will \die out" eventually when it becomes apparent that they correspond to

clutter, distractions or mis-estimation.

Kitagawa (1996) presents two algorithms to smooth a time-series of sample-set state esti-

mates, which we reproduce here in theCondensation framework. The �rst is very straight-

forward. Rather than storing the set f(s

(n)

t

; �

(n)

t

)g at each time t, the sample position s

(n)

t

is replaced by an entire trajectory S

(n)

t

= (s

(n;1)

t

; : : : ; s

(n;t)

t

). The history (s

(n;1)

t

; : : : ; s

(n;t�1)

t

)

is taken to be the trajectory of the base sample which is chosen in the �rst step of the

Condensation algorithm, and the moments of the smoothed density p(X

�

jZ

t

) can be

estimated for 1 � � � t by computing the expectation

E [�(X

�

)jZ

t

] �

N

X

n=1

�

(n)

t

�

�

s

(n;�)

t

�

:

The sequence-based smoothing algorithm is shown in �gure 7.1. Note that it is reminiscent

of the dynamic programming algorithm used, for example, to estimate the most likely

path through a Hidden Markov Model (HMM) (Rabiner and Bing-Hwang, 1993). This

algorithm has the disadvantage that in practice, the variance of the samples fs

(n;�)

t

g for

given t and � � t is very small. In fact, for large t � � it is typical to �nd that all of

the fs

(n;�)

t

; n = 1 : : : Ng are identical, meaning that all of the sample-sequences share a

common ancestor trajectory. (In later results this is typically true for t�� > 10.) This may

1

Real time is used here to distinguish the standard Condensation tracking algorithm from any batch-

mode post-processing. It does not imply the standard computer vision meaning, that tracking is e�ected in

the time between acquisition of consecutive images.
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Iterate

From the \old" sample-sequence set f(S

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng at time-step t� 1,

construct a \new" sample-sequence set f(S

(n)

t

; �

(n)

t

); n = 1; : : : ; Ng for time t, where

S

(n)

t

= (s

(n;1)

t

; : : : ; s

(n;t)

t

).

Construct the n

th

of N new samples as follows:

1. Select a base sequence S

(i)

t�1

= (s

(i;1)

t�1

; : : : ; s

(i;t�1)

t�1

) by sampling with probability

�

(i)

t�1

. This can be done e�ciently, for example using cumulative probabilities

as described in section 3.4.

2. Predict by sampling from p(X

t

jX

t�1

= s

(i;t�1)

t�1

) to choose s

(n;t)

t

.

3. Measure and weight the new position in terms of the image data Z

t

, setting

�

(n)

t

= p(Z

t

jX

t

= s

(n;t)

t

), then set S

(n)

t

= S

(i)

t�1

[ s

(n;t)

t

.

Finally normalise so that

P

n

�

(n)

t

= 1 to �nd the new sample-sequence set

(S

(n)

t

; �

(n)

t

). Moments � of the smoothed density p(X

�

jZ

t

) for 1 � � � t can

be found from

E [�(X

�

)jZ

t

] �

N

X

n=1

�

(n)

t

�

�

s

(n;�)

t

�

Figure 7.1: The sequence-based smoothing algorithm for Condensation.

be acceptable if the only required output is a single estimated position for each time-step,

but in some circumstances it is preferable to maintain more detailed information as long as

possible, and so a more complex algorithm follows. Note that the collapse of the trajectories

S

(n)

t

into common histories permits pruning, thus allowing a signi�cant economy of storage,

which is otherwise O(Nt).

The second smoothing algorithm presented in (Kitagawa, 1996) is a forward{backward

algorithm, analogous to the smoothing algorithm for Gaussians (Gelb, 1974) which is a two-

pass extension of the Kalman �lter, and also related to the forward{backward algorithm

for HMMs (Rabiner and Bing-Hwang, 1993). The forward pass consists of a standard

application of the Condensation tracker, during which all the sets f(s

(n)

t

; �

(n)

t

)g for t =

1 : : : T are stored. Now smoothing is done purely by reweighting the �

(n)

t

| all of the s

(n)

t

remain �xed. The algorithm presented in (Kitagawa, 1996) contains a backward �ltering
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step which requires access to the measurements Z

t

during the second pass, and also means

that the density p(X

t�1

jX

t

) must be available for sampling, a condition which is not imposed

by the standard Condensation algorithm. We believe this backward �ltering step is

unnecessary and so do not include it, however the mathematical treatment and the basic

structure of our algorithm are both derived from (Kitagawa, 1996). Note that our algorithm,

in common with that in (Kitagawa, 1996), does require the evaluation of p(X

t

jX

t�1

) which

constitutes some restriction on the form of dynamical model used.

De�ning Z

T

t

= (Z

t

; : : : ;Z

T

) we have Z

T

= Z

t�1

[ Z

T

t

. Therefore,

p(X

t

jZ

T

) = p(X

t

jZ

t�1

;Z

T

t

)

/ p(X

t

;Z

T

t

jZ

t�1

)

= p(Z

T

t

jX

t

)p(X

t

jZ

t�1

) by the independence of the Z

t

:

It is this rearrangement which allows the sample positions s

(n)

t

to remain �xed after the

smoothing step. Recall from section 3.4 on page 40 that the set fs

(n)

t

g is approximately a

fair sample from p(X

t

jZ

t�1

), so by replacing the original �

(n)

t

by smoothing weights

 

(n)

t

= p(Z

T

t

jX

t

= s

(n)

t

);

the set f(s

(n)

t

;  

(n)

t

)g, when normalised, will approximate p(X

t

jZ

T

) as required. It is there-

fore the weights  

(n)

t

which the backward smoothing pass will calculate.

A recursive algorithm to calculate the densities p(Z

T

t

jX

t

) can be speci�ed mathemati-

cally as follows:

p(Z

T

T

jX

T

) = p(Z

T

jX

T

)

p(Z

T

t+1

jX

t

) =

Z

p(Z

T

t+1

jX

t+1

)p(X

t+1

jX

t

) dX

t+1

p(Z

T

t

jX

t

) = p(Z

t

jX

t

)p(Z

T

t+1

jX

t

)

An implementation requires the derivation of an approximation �

(n)

t

to p(Z

T

t+1

jX

t

= s

(n)

t

).

The integral is approximated as a sum:

p(Z

T

t+1

jX

t

= s

(n)

t

) � �

(n)

t

=

N

X

m=1

p(Z

T

t+1

jX

t+1

= s

(m)

t+1

)

p(X

t+1

= s

(m)

t+1

jX

t

= s

(n)

t

)

p(X

t+1

= s

(m)

t+1

jZ

t

)

using the correction

p(X

t+1

= s

(m)

t+1

jZ

t

) = 


(m)

t

=

N

X

k=1

�

(k)

t

p(X

t+1

= s

(m)

t+1

jX

t

= s

(k)

t

):
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Perform the forward pass giving a weighted sample-set f(s

(n)

t

; �

(n)

t

)g for each t =

1 : : : T , computed by the Condensation algorithm.

1. Initialise smoothing weights  

(n)

T

:

 

(n)

T

= �

(n)

T

for n = 1 : : : N:

2. Iterate backwards over the sequence for t = T � 1 : : : 1:

(a) Calculate prediction probabilities:

�

(m;n)

t

= p(X

t+1

= s

(m)

t+1

jX

t

= s

(n)

t

) for m;n = 1 : : : N:

(b) Calculate correction factors:




(m)

t

=

N

X

k=1

�

(k)

t

�

(m;k)

t

for m = 1 : : : N:

(c) Approximate backward variables:

�

(n)

t

=

N

X

m=1

 

(m)

t+1

�

(m;n)

t




(m)

t

for n = 1 : : : N:

(d) Evaluate smoothing weights

 

(n)

t

= �

(n)

t

�

(n)

t

for n = 1 : : : N

then normalise multiplicatively so

P

 

(n)

t

= 1, and store with sample

positions as

f(s

(n)

t

;  

(n)

t

); n = 1 : : : Ng

Figure 7.2: The backward stage of the two-pass smoothing algorithm for Con-

densation.
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It is introduced because the s

(m)

t+1

are not distributed uniformly but are a sample from

p(X

t+1

jZ

t

), and without the correction this could bias the sum. This method of correcting

the estimate of an integral over sample-sets is borrowed from the technique of importance

sampling (Ripley, 1987), as used in the previous chapter for quite another purpose. The

backward pass of the two-pass smoothing algorithm is shown in �gure 7.2. Note that

the complexity of the algorithm is O(TN

2

) and that O(TN) storage is required for the

sample-sets, and O(N

2

) for the �

(m;n)

t

. This latter storage requirement can be avoided

by eliminating the �

(m;n)

t

from the algorithm and instead calculating each of the p(X

t+1

=

s

(m)

t+1

jX

t

= s

(n)

t

) twice. Since this calculation is typically the most computationally expensive

step of the algorithm, this tradeo� must be carefully considered.

7.2 Applying the smoothing algorithms

First, the sequence-based smoothing algorithm was applied to a test sequence from sec-

tion 5.2 which shows a ball bouncing against a backdrop of heavy clutter. The ball moves

under the action of a two-state motion model, where the �rst state is constant acceleration

due to gravity and the second state corresponds to an instantaneous bounce event during

which the ball's vertical velocity is reversed. The state vector X

t

includes a discrete vari-

able labelling which of the two discrete states the model is in, The unsmoothed output of a

mixed-state Condensation tracker is depicted in �gure 7.3. At each time-step, an MAP

estimate is computed to determine which of the two states the tracker is in, and the mean

and variance of the y translation coordinate within that state are shown, along with an

indication of which time-steps were estimated to contain bounce events. The unsmoothed

output is rather jittery due to the clutter, and the bounce events are not always accurately

found. Figure 7.4 demonstrates the mis-estimation problem; the distribution has split into

several peaks, and although one peak is present at the true ball position, the other peaks

pull the distribution mean away from the desired value. After running the sequence-based

smoothing algorithm (�gure 7.5) most of the jitter has been eliminated and the trajectory

shows smooth parabolas between bounces. One �eld has still been incorrectly estimated

to contain a bounce. As discussed in the previous section, the variance is estimated to be

zero except over the last few time-steps, since all the samples in the �nal distribution share

the same history until t = 60 �elds. Of course, this must be an under-estimate. Figure 7.4

shows detail from �eld 26 of the sequence before and after smoothing.
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Figure 7.3: The unsmoothed output of a mixed-state Condensation algorithm

contains estimation errors. The mean of the y coordinate of the distribution is shown

in pixels, along with the mean-square variance around the curve in (pixels)

2

. Vertical bars

correspond to time-steps which are estimated to contain bounce events. The variance is high

when several hypotheses have high probabilities (see �gure 7.4).

The two-pass algorithm also successfully smooths the raw tracked output (�gure 7.6),

and now correctly determines the bounce events. Variance information is also preserved

by the two-pass �lter, and a small spread of samples in the distribution can be seen in

�gure 7.7. Note that neither smoothing algorithm incorporates any separate machinery to

estimate the mixed-state transitions. The discrete-state labels, forming part of the state-

vector X

t

, are automatically estimated along with the continuous state variables. Of course,

the values of the state labels of s

(n)

t

and s

(m)

t�1

play a large part in determining the density

p(X

t+1

= s

(n)

t+1

jX

t

= s

(m)

t

) for the two-pass algorithm.

Finally, the algorithms were applied to another test sequence showing a hand moving

over a cluttered desk. The hand translates and deforms in a 12-dimensional linear shape-

space. After approximately 30 �elds, the unsmoothed distribution splits into two peaks

(�gure 7.8), one of which is caused by clutter. The clutter peak dominates for 10 �elds,

causing a serious error in the estimated state, although the true position is maintained as a

smaller peak in the distribution throughout, and the tracker recovers eventually. Figure 7.9

shows graphs of the y coordinate of the estimated mean of the distribution along with the
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Figure 7.4: Smoothing eliminates false hypotheses. Before smoothing, multiple hy-

potheses can increase the variance of the distribution (top left) and shift the mean away from

the object position (top right). After running the sequence-based smoothing algorithm the

estimated variance has dropped to zero (see text) but the mean is now correctly positioned

(bottom). Detail from �eld 26 of the sequence is shown (see �gures 7.3 and 7.5). The solid

line is the distribution mean, and the dotted lines are high-scoring samples, where the width

of the sample outline is proportional to its sample weight.

variance of the sample-set. The hand moves up smoothly from �eld 20 to �eld 40, but

the unsmoothed estimate is distracted between �elds 30{40, before rapidly regaining the

correct position at �eld 42. Note the very high variances, especially just before the tracker

recovers.

Figure 7.10 shows the result of applying the two-pass smoothing algorithm to the hand

sequence (the sequence-based algorithm provides similar state estimates and lower variance

as before). When the entire sequence is taken into account, it is apparent that the lower

peak in �gure 7.8 corresponds to clutter, and so only the trajectory corresponding to the

actual hand position survives. Figure 7.11 graphs the estimated y coordinate and the mean-

square curve variances for the output of the two-pass smoother. As in the case of the ball,

the jitter on the state estimates is reduced, and the hand position is signi�cantly more
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Figure 7.5: The sequence-based algorithm smooths away jitter. The mean of the

y coordinate of the distribution is shown in pixels, along with the mean-square variance

around the curve in (pixels)

2

. Vertical bars correspond to time-steps which are estimated to

contain bounce events, and a bounce is incorrectly estimated at �eld 4. The sequence-based

smoothing algorithm collapses the variance to zero for all but the last few time-steps (see

text).
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Figure 7.6: The two-pass algorithm preserves variance information while smooth-

ing. The mean of the y coordinate of the distribution is shown in pixels, along with the

mean-square variance around the curve in (pixels)

2

. Vertical bars correspond to frames

which are estimated to contain bounce events. The bounce events are correctly identi�ed.

accurately determined compared with the raw Condensation algorithm. The variance of

the sample-sets is also much reduced, although clearly towards the end of the sequence the

variance must increase to match that of the raw data.

7.3 Fixed-lag smoothing

Kitagawa (1996) also implements �xed-lag versions of both smoothing algorithms. The idea

is to introduce a lag of p frames between observations and state estimates and thus to report

at each timestep an estimate from the distribution p(X

t�p

jZ

t

). This is easy to implement

with either smoothing algorithm. In the sequence-based case it is enough simply to store

sequences S

(n)

t

= (s

(n;t�p)

t

; : : : ; s

(n;t)

t

) and proceed as before to calculate estimates

E [�(X

t�p

)jZ

t

] �

N

X

n=1

�

(n)

t

�

�

s

(n;t�p)

t

�

:

For the two-pass algorithm the backward pass is restarted at every timestep, but only

iterated p steps to calculate the smoothing weights  

(n)

t�p

= p(Z

t

t�p

jX

t�p

= s

(n)

t�p

) from which
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Figure 7.7: Smoothing eliminates false hypotheses. The two-pass smoothing algorithm

collapses the distribution down to a single peak with variance information preserved. A small

spread of samples is present around the mean (�gure 7.6 indicates that the estimated mean-

square variance around the curve is only a few pixels). Detail from �eld 26 of the sequence

is shown (compare with �gure 7.4). The solid line is the distribution mean, and the dotted

lines are high-scoring samples, where the width of the sample outline is proportional to its

sample weight.

estimates

E [�(X

t�p

)jZ

t

] �

N

X

n=1

 

(n)

t�p

�

�

s

(n)

t�p

�

can be found. These �xed-lag smoothers have not been implemented in the Condensation

framework but it is to be expected that they would produce somewhat more accurate state

estimates in cases where clutter distractions are transient (in particular where they last for

fewer than p frames). The sequence-based �xed-lag smoother would probably be preferable

if real-time operation were desired, since it entails a negligible computational overhead

compared with an unsmoothed tracker, although there is a storage cost of order O(Np).
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�eld 32 �eld 34

�eld 38 �eld 42

Figure 7.8: Clutter causes temporary mis-estimation from unsmoothed data. The

unsmoothed state distribution has begun to diverge in �eld 32, and by �eld 34 the clutter peak

dominates. The multi-modality persists until �eld 38, after which the clutter peak rapidly

dies away, leaving a single peak around the object again by �eld 42. The solid line is the

distribution mean, and the dotted lines are high-scoring samples, where the width of the

sample outline is proportional to its sample weight.
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Figure 7.9: The unsmoothed hand data leads to estimation errors. The mean

of the y coordinate of the distribution is shown in pixels with a histogram showing the

full distribution plotted behind, along with the mean-square variance around the curve in

(pixels)

2

. Figure 7.8 shows the distribution splitting into two peaks between �elds 32{34,

and this is apparent from the graphs. The clutter peak is stronger, and causes the position

to be mis-estimated by shifting the distribution mean. Although the hand moves up steadily

during �elds 30{40, the estimated position moves down before suddenly recovering at �eld 42.
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�eld 32 �eld 34

�eld 38 �eld 42

Figure 7.10: The smoothing algorithm correctly follows the hand. Compare with

�gure 7.8; after smoothing using the two-pass algorithm, all of the visible distribution is

concentrated on the correct peak. The solid line is the distribution mean after smoothing,

and the dotted lines are high-scoring samples, where the width of the sample outline is

proportional to its weight.
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Figure 7.11: The two-pass smoothing algorithm corrects estimation errors. Fig-

ure 7.10 shows that the two-pass algorithm eliminates the clutter peak which distracted the

standard tracker. Now the estimated state corresponds to the true hand position as it moves

steadily up the image from �eld 20 (compare with �gure 7.9). The variance of the sample-set

is also greatly reduced, although clearly at the end of the sequence the variance increases to

match that of the raw output. The mean of the y coordinate of the distribution is shown in

pixels with a histogram showing the full smoothed distribution plotted behind, along with the

mean-square variance around the curve in (pixels)

2

.
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Discussion

This chapter examines issues arising from the work presented in this thesis, and suggests

some areas of future research which may prove fruitful. Section 8.3 also includes a fuller re-

view of the literature on random-sampling methods for �ltering than was given in chapter 1,

since the notation and ideas presented in chapters 3{6 allow a more technical discussion of

the related research.

8.1 Failure modes of the Condensation algorithm

Previous chapters have not addressed the failure modes of the Condensation algorithm in

any detail. This is partly because unlike for example a Kalman �lter, the Condensation

algorithm has a natural mechanism to trade o� speed and robustness. When tracking fails,

the sample-set size N can be increased and tracking runs slower but has a higher chance

of success. For this reason, it is hard to construct a case where Condensation absolutely

fails to track since often selecting a larger N will allow the �lter to track through any

particularly di�cult portion of a sequence. The main di�culties which have been found

experimentally arise when the shape model is inaccurate. This is to be expected, since as

N !1 the �lter increasingly well approximates p(X

t

jZ

t

) and if the form of p(ZjX) chosen

is a poor re
ection of the desired observation density, then no amount of increase in N

will improve tracking performance. It is expected that region-based models as discussed in

the next section will allow much more robust modelling of shape than primarily edge-based

information as used in this thesis, and this may alleviate the problem of accurate tuning of
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the observation density.

The main concern of the work which will be reviewed in section 8.3 is with the e�ciency

of Condensation-like algorithms as statistical estimators. No consideration has been

given in this thesis to such notions of e�ciency in the Condensation algorithm | the

criterion of success of the �lter has in general been taken to be an ability to track an object

throughout an extended sequence without su�ering unrecoverable errors which cause the

object's location to be lost entirely. This approach is justi�ed partly by the existence of the

aforementioned research by others. Clearly it may be advantageous to apply some of these

methods in the Condensation framework and this is discussed in section 8.3. One common

complaint in e.g. (Gordon and Salmond, 1995; Carpenter et al., 1997; Doucet, 1998) is that

N must be impractically large to adequately model the state density, especially in high-

dimensional spaces (more than three or four dimensions). In the experiments described in

this thesis, we have not found this to be a problem | the hand-tracker of section 4.3 on

page 60 requires a 12-dimensional shape-space but uses only N = 500 samples for tracking.

Kitagawa (1996) reports that even relatively ine�cient samplers are su�cient if only the

mean of the distribution need be estimated. It seems likely that we are able to use so few

samples here both because only the mean of the state density is estimated rather than any

higher-order moments, and because of the particular nature of our learnt motion models

which allow accurate prediction even in high-dimensional spaces. Of course, just because

tracking does not fail unrecoverably, this does not mean that the state density is accurately

represented. It may be that when higher-order moments of a distribution are required,

for example for the learning algorithms proposed in section 8.5, a more e�cient form of

Condensation will be necessary.

8.2 Observation models for Condensation

As discussed in section 3.6 on page 46, the observation model Z should ideally be a set of

image features (whether discrete points, curves or regions) independent of X. The obser-

vation density described in chapter 3 is based on a feature-curve approximation where the

curve approximated varies according to the predicted sample curve s. Alternative forms of

p(ZjX) are used in chapters 5 and 6 for particular applications, but these share with the

original form in section 3.6 the characteristic of being evaluated only over a small image

region close to a set of predicted curve features. While p(Z

t

jX

t

= s

(n)

t

) for a given sample
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position s

(n)

t

involves only local computation near to the curves encoded by s

(n)

t

, the re-

gions explored as this density is evaluated for all the fs

(n)

t

; n = 1; : : : ; Ng may encompass

large areas of the image. As explained in section 3.6, for approximations of this form to be

valid, the partition function Z in (3.12) on page 50 must vary slowly compared with X and

it remains to be veri�ed experimentally that this condition is true in the applications we

consider.

In principle it would be possible to use an observation density such as those considered

in the literature for Bayesian analysis of static images (see section 1.4 on page 9) but

there are problems with this approach. The region-based observation models used for

example in (Geman and Geman, 1984; Ripley and Sutherland, 1990; Storvik, 1994) are

very expensive to evaluate, and so some approximate form may be necessary to deliver

acceptable performance when processing long image sequences. Another problem concerns

the nature of clutter in our typical applications. The models in (Geman and Geman, 1984;

Ripley and Sutherland, 1990; Storvik, 1994) assume simple stationary background texture,

very unlike the typical o�ce or outdoor scenes in our experiments. For a fully Bayesian

treatment of the problem it would be necessary to construct a prior model for a \typical

scene" in the world. The methods proposed by Zhu and Mumford (1998) may prove useful in

this context, but again they are very computationally costly. Alternative methods modelling

simple aspects of the background have been proposed in (MacCormick and Blake, 1998) and

may prove more appropriate for the Condensation framework.

The best approach to designing an observation density which takes into account the

entire image at every timestep yet supports real-time or near real-time operation may be to

use a multi-scale approach. It may be possible to construct an approximation which uses

information from the entire image at coarse scale but only local information at �ner scale.

The importance-sampling techniques of chapter 6 might be applicable to this problem if a

coarse-scale observation model could be used to direct importance sampling of �ner-scale

images.

8.3 Sampling methods for particle �lters

Much of the statistical and signal processing literature related to the Condensation algo-

rithm concerns modi�cations to the sampling algorithm to improve its e�ciency (Gordon

et al., 1993; Gordon and Salmond, 1995; Carpenter et al., 1997; Pitt and Shepherd, 1997;
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Doucet, 1998). As mentioned in section 8.1 we have not devoted much study to this question,

so this section considers which of these modi�cations may be usefully applied in the Con-

densation framework. The typical measure of e�ciency is the variance of the estimates

produced by the algorithm over repeated runs using the same input data. Carpenter et al.

(1997) and Doucet (1998) both advocate the use of the \e�ective sample size" N

e�

� N as

a measure of the e�ciency of a sample-set representation. Given a set f(s

(n)

t

; �

(n)

t

)g which

approximates a density p(X

t

), N

e�

is related to the correlation between the samples in the

set when compared to a set of fair samples from the distribution p(X

t

). If the samples are

highly correlated, then the e�ective sample size is low.

Gordon et al. (1993; 1995) are credited with the �rst publication of an algorithm equiva-

lent to Condensation. Called the \bootstrap �lter," it was inspired directly by (Smith and

Gelfand, 1992). Following the weighted bootstrap philosophy the output at each timestep is

a uniformly weighted sample-set, corresponding to N fair samples from the approximating

distribution ~p(X

t

jZ

t

) at time t. This leads to exactly the same algorithm as set out in

�gure 3.6 on page 44 but with a rotation of the order of the steps corresponding to one

iteration, as follows:

Algorithm 1

1. start with a set of uniformly weighted samples f(s

(n)

t�1

; 1=N)g.

2. predict the new positions by sampling s

0

t

(n)

� p(X

t

jX

t�1

= s

(n)

t�1

) for each base

n = 1; : : : ; N .

3. measure to calculate weights �

(n)

t

= p(Z

t

jX

t

= s

0

t

(n)

) and store as a weighted sample

set f(s

0

t

(n)

; �

(n)

t

); n = 1; : : : ; Ng.

4. resample to choose N evenly weighted samples f(s

(n)

t

; 1=N)g by sampling N times

from the set f(s

0

t

(n)

; �

(n)

t

); n = 1; : : : ; Ng choosing sample s

0

t

(n)

with probability �

(n)

t

.

Carpenter et al. (1997) point out that if the output of the �lter is to be used to esti-

mate moments of the state density, it is more e�cient to use the weighted sample-set

f(s

0

t

(n)

; �

(n)

t

)g before the resampling stage, as in (3.7) on page 39, than the resampled lo-

cations f(s

(n)

t

; 1=N)g used by Gordon et al. In fact, Gordon et al. �nd that resampling in

step 4 to generate N unweighted samples from the set of N weighted samples leads to a

poor representation of the state density, since the set f(s

(n)

t

; 1=N)g contains many repeated
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elements. To address this, they recommend \sample boosting" (Gordon and Salmond, 1995)

by a factor B

f

. This technique involves generating NB

f

samples in steps 2 and 3 of algo-

rithm 1, so that the resampling stage in step 4 results in many fewer repeated values in the

evenly-weighted set. The sample-boosting algorithm at each timestep is as follows:

Algorithm 2

1. start with a set of uniformly weighted samples f(s

(n)

t�1

; 1=N)g.

2. resample by sampling NB

f

indices j

n

uniformly (with replacement) from [1; N ] to

choose base samples fs

00

t

(n)

= s

(j

n

)

t�1

; n = 1; : : : ; NB

f

g.

3. predict the new positions of NB

f

samples by sampling s

0

t

(n)

� p(X

t

jX

t�1

= s

00

t

(n)

)

for each base n = 1; : : : ; NB

f

.

4. measure to calculate weights �

(n)

t

= p(Z

t

jX

t

= s

0

t

(n)

) and store as a weighted sample

set f(s

0

t

(n)

; �

(n)

t

); n = 1; : : : ; NB

f

g.

5. resample to choose N evenly weighted samples f(s

(n)

t

; 1=N)g by sampling N times

from the set f(s

0

t

(n)

; �

(n)

t

); n = 1; : : : ; NB

f

g choosing sample s

0

t

(n)

with probability

�

(n)

t

.

This technique would not seem to provide any advantage in the Condensation framework

where moments are computed directly from the weighted sample-set. Typically the mea-

surement stage dominates computation time, and it would be simpler to increase N than

to introduce the boosting factor.

As another method to alleviate the problem of resampling identical positions s

(n)

t

, Gor-

don et al. also propose \roughening" of the sample set during step 2 of algorithm 2 so

that

s

00

t

(n)

= s

(j

n

)

t�1

+ �

n

where �

n

� R(�) is a random variate drawn from some distribution which is a function of

the entire sample-set f(s

(n)

t�1

; 1=N)g. Depending on the distribution R chosen, this may be

equivalent to simply altering the process model p(X

t

jX

t�1

), otherwise it destroys a mean-

ingful interpretation of the distribution approximated by f(s

(n)

t

; 1=N)g. They implement

a scheme using R which is a function of the variance of the entire sample-set and report
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improved performance as a result. It would be possible to implement such a scheme in

the Condensation framework but it seems preferable to try to understand the reasons for

poor performance and either alter the process model if the process noise is too small, or

use some kind of importance sampling to redistribute samples without destroying the prob-

abilistic interpretation of the output. Finally, the technique of \prior editing" is proposed.

In this procedure samples s

0

t

(n)

are subjected to a rejection test after the weight �

(n)

t

has

been calculated in step 4 of algorithm 2. If the sample is rejected, more samples s

0

t

(n)

are

generated via steps 2 and 3 until one is accepted. Depending on the rejection criterion this

may be equivalent to using an importance function as in chapter 6 (and see below) but

without correcting the weights accordingly. The advantage of the procedure is that samples

generated this way are unlikely to have very low weights, and therefore the variance of the

sample weights is reduced. It seems inelegant to destroy the probabilistic interpretation of

the sample-sets with this technique, however. Also, as in the case of sample-boosting, the

computational load would be large in the Condensation framework since the evaluation of

the observation density is costly. Finally, a random number of evaluations of steps 2 and 3

are required for a given iteration so the algorithm no longer runs in a �xed computational

bound. It seems, therefore, that simply increasing N would provide similar performance

gains in Condensation without disturbing the simplicity of the algorithm.

Carpenter et al. (1997) propose a number of algorithms for e�cient selection of base

samples which were discussed in section 3.4 on page 40. They also propose a strati�ed

sampling scheme which is appropriate when the process and observation models have a

certain tractable form. The idea is to use importance sampling so that instead of sampling

new locations from p(X

t

jX

t�1

) as in standard Condensation, the importance function p̂ �

p(X

t

jZ

t

) is used. The intuition is similar to that of chapter 6 of this thesis, that by choosing

an importance function which takes into account the observation data at time t, samples

will be positioned more e�ciently. In fact, as noted below, Doucet (1998) demonstrates

that the optimal importance function (in the sense given below) is p(X

t

jX

t�1

;Z

t

). Of

course the applicability of this approach depends on the quality of the approximation p̂(�)

to p(X

t

jZ

t

). An approximation is derived in (Carpenter et al., 1997) for the bearings-only

tracking problem treated by Gordon et al. (1993; 1995) and signi�cantly improved results

are shown for the strati�ed sampling algorithm (in the sense that N

e�

is larger) compared

with the standard bootstrap �lter. A strati�ed sampling scheme is used because the density

p̂ is constructed as a mixture model, and each mixture component is a separate stratum in
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the sampling scheme. An iteration of the strati�ed �ltering algorithm proceeds as follows:

Algorithm 3

1. start with a set of weighted samples f(s

(n)

t�1

; �

(n)

t�1

)g.

2. predict a new sampling density. The new density p(X

t

jZ

t

) is estimated as

p(X

t

jZ

t

) �

N

X

n=1

�

(n)

t�1

p(X

t

jX

t�1

= s

(n)

t�1

)p(Z

t

jX

t

)

which is approximated using a mixture density

p̂(X

t

) =

N

X

n=1

^

�

n

p̂

n

(X

t

)

3. resample a set of N indices j

n

2 [1; N ] picking each index i N

i

times where E [N

i

] =

N

^

�

i

. An e�cient algorithm for this resampling is given in (Carpenter et al., 1997).

4. sample the s

(n)

t

from p̂, drawing s

(n)

t

� p̂

j

n

.

5. weight to determine a new weighted sample-set f(s

(n)

t

; �

(n)

t

)g where the �

(n)

t

are given

by

�

(n)

t

/

�

(j

n

)

t�1

p(X

t

= s

(n)

t

jX

t�1

= s

(j

n

)

t�1

)p(Z

t

jX

t

= s

(n)

t

)

^

�

j

n

p̂

j

n

(X

t

= s

(n)

t

)

There is no obvious way to construct p̂ for the observation and process densities used in

this thesis, so this approach is probably not immediately applicable in the Condensation

framework.

Pitt and Shephard (1997) introduce some interesting variations on sampling for particle

�lters. The �rst they call the \auxiliary particle �lter," which is a particular form of

importance sampling which does not require the evaluation of p(X

t

jX

t�1

), and thus avoids

the O(N

2

) computation required for that evaluation. As in chapter 6 of this thesis, the aim

is to avoid generating samples with low weights, or more generally to reduce the variance

of the sample weights at a given iteration. The approach rests on the assumption that for

a given base sample s

(n)

t�1

, the distribution p(X

t

jX

t�1

= s

(n)

t�1

) is much narrower than the

overall prediction distribution p(X

t

jZ

t�1

). In addition, the observation density p(Z

t

jX

t

)

is assumed to be locally smooth, so that the variance of the weights of a set of samples

generated from p(X

t

jX

t�1

= s

(n)

t�1

) is assumed in general to be much lower than the variance
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of the weights of a set of samples generated from p(X

t

jZ

t�1

). The algorithm works by �rst

computing so-called \�rst-stage weights" f�

(n)

t�1

g where

�

(n)

t�1

= �

(n)

t�1

p(Z

t

jX

t

= �

(n)

t

)

and �

(n)

t

is some estimator of p(X

t

jX

t�1

= s

(n)

t�1

) | in (Pitt and Shepherd, 1997) �

(n)

t

is

taken to be the mean of p(X

t

jX

t�1

= s

(n)

t�1

). Following the assumptions given above, it

follows that p(Z

t

jX

t

= �

(n)

t

) is a good predictor of the weight of a sample generated from

the base s

(n)

t�1

, and so the algorithm works by generating more samples from bases with high

�

(n)

t�1

, in other words by concentrating sampling in areas where the predicted samples are

expected to have high measurement likelihoods. One iteration is as follows:

Algorithm 4

1. start with a set of weighted samples f(s

(n)

t�1

; �

(n)

t�1

)g.

2. compute �rst-stage weights �

(n)

t�1

= �

(n)

t�1

p(Z

t

jX

t

= �

(n)

t

) where

�

(n)

t

= E [p(X

t

jX

t�1

= s

(n)

t�1

)]:

3. resample a set of N indices j

n

2 [1; N ] picking each j

n

= i with probability propor-

tional to �

(i)

t�1

.

4. predict the new sample positions s

(n)

t

, drawing s

(n)

t

� p(X

t

jX

t�1

= s

(j

n

)

t�1

).

5. measure to determine a new weighted sample-set f(s

(n)

t

; �

(n)

t

)g where the �

(n)

t

are

given by

�

(n)

t

/

p(Z

t

jX

t

= s

(n)

t

)

p(Z

t

jX

t

= �

(j

n

)

t

)

:

This algorithm restricts the process density to be of a form which allows �

(n)

t

to be easily

computed, but unlike algorithm 3 does not put constraints on the form of the observation

density, so the auxiliary particle �lter may be useful in the Condensation framework. In

the applications shown in (Pitt and Shepherd, 1997) the calculation of p(Z

t

jX

t

) is fast, so the

auxiliary �ltering, with its N additional evaluations of p(Z

t

jX

t

) in step 2, does not greatly

slow the computation. In the Condensation applications considered in this thesis, the

evaluation of this observation density dominates the computation, so an auxiliary particle
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�lter might be expected to run almost twice as slowly as a standard Condensation �lter;

however Pitt and Shephard report signi�cant increases in performance for some problems

using the auxiliary �lter. It may be that reducing N for a Condensation �lter at the

same time as implementing an auxiliary �lter will increase performance and this should be

investigated.

Pitt and Shephard also consider the problem of \adaption" of a sampling algorithm, by

which they mean choosing a particular importance sampling density suited to a given pro-

cess and observation model to improve the e�ciency of sampling. The methods they use are

closely related to those of (Carpenter et al., 1997) in algorithm 3 above, and again, while

(Pitt and Shepherd, 1997) demonstrates increased performance for certain applications,

there is no obvious way to apply the technique to the models used in this thesis. A �xed-lag

�lter is also developed in (Pitt and Shepherd, 1997). The idea is to store p observations,

and to design a �lter which approximates the state-density p(X

t

jZ

t+p�1

). This can be done

in the standard particle-�lter framework by replacing the samples s

(n)

t

by sample-sequences

(s

(n;1)

t

; s

(n;2)

t

; : : : ; s

(n;p)

t

) drawn from p(X

t

;X

t+1

; : : : ;X

t+p�1

jX

t�1

= s

0

t

(n)

) by repeated appli-

cation of the process density p(X

t

jX

t�1

), where s

(n;k)

t

is drawn from p(X

t+k�1

jX

t�1

= s

0

t

(n)

).

These samples are then weighted using

�

(n)

t

=

p

Y

k=1

p(Z

t+k�1

jX

t+k�1

= s

(n;k)

t

):

This is a �xed-window form of the Handschin and Mayne algorithm described in section 1.5

on page 11. Pitt and Shephard also propose using the auxiliary particle �lter machinery to

weight these sample-sequences where now

�

(n)

t

=

p

Y

k=1

p(Z

t+k�1

jX

t+k�1

= �

(n;k)

t

)

and �

(n;k)

t

is, for example, the mean of p(X

t+k�1

jX

t�1

= s

0

t

(n)

). It might be expected that

the standard application, without the auxiliary �ltering modi�cation, would be less e�cient

than use of a �xed-lag sequence-smoothing �lter as described in section 7.3 on page 122

since it is very similar in spirit but does not take into account the observation densities

p(Z

t+k�1

jX

t+k�1

) when sampling. The auxiliary �lter formulation may be advantageous

for the applications of Condensation in this thesis, and a comparison with the �xed-lag

smoother would be useful.

Finally, Pitt and Shephard (1997) discuss strati�ed sampling, but with a di�erent mo-

tivation to that of Carpenter et al. (1997). They propose to estimate model parameters �
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which are assumed �xed over time by using strati�ed sampling where each stratum corre-

sponds to a particular value of the parameter vector �. As evidence builds up from multiple

observations, some strata which correspond to unlikely parameter choices will have very

low probability, and these can then be replaced by new instantiations for �. By careful

choice of these new � values, the �lter may be able to \home in" on a good estimate of

model parameters, however the method of deciding when to discard \unlikely" parameters

and the choice of which new parameter vector to replace them with is somewhat ad hoc.

Nevertheless, some form of this idea may prove useful for example in the case discussed in

section 6.4 on page 110 of allowing a hand-tracker template to adapt to di�erent users.

Doucet (1998) presents a review of random sampling methods for Bayesian �ltering using

an importance-sampling framework as his general case (so for example Condensation is a

special case where the importance function is taken to be p(X

t

jX

t�1

)). He shows that the

optimal choice of importance function is

g(�) = p(X

t

jX

t�1

;Z

t

)

in the sense that it minimises the variance of the importance weights �

(n)

t

conditional

on s

0

(n)

t�1

and Z

t

. It is clear that the prior editing procedure of (Gordon et al., 1993) as

well as the strati�ed sampling scheme (Carpenter et al., 1997) in algorithm 3 and the

auxiliary particle �lter of (Pitt and Shepherd, 1997) are approximations to this optimal

importance function. In a sense, the sampling function of chapter 6, which is a mixture of

p(X

t

jX

t�1

) and an approximation to p(Z

t

jX

t

) may be seen as a very crude approximation

to p(X

t

jX

t�1

;Z

t

). Doucet presents various schemes to approximate the optimal g(�), using

Monte-Carlo methods and analytic techniques where applicable. As in (Carpenter et al.,

1997; Pitt and Shepherd, 1997) the analytic techniques are not suitable for the models used

in this thesis, but it may be that a Monte-Carlo approximation to the optimal function

could be found for the Condensation framework and this should be investigated.

8.4 A comparison of the smoothing algorithms

Both of the smoothing algorithms presented in chapter 7 signi�cantly aid the interpretation

of the output of a Condensation tracker. One of the major bene�ts of the Condensation

algorithm is that it allows the state density to split into several peaks to transiently represent

multiple hypotheses about object con�guration. This facility enables the tracker to follow

the object while measurements are ambiguous, keeping track of several possible trajectories
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until the true object position can once more be con�dently established. During the period

that the distribution contains multiple peaks, however, the unsmoothed �lter may report

grossly misleading state estimates even though it ultimately recovers. This is because the

state estimates are based on the mean of the distribution, and thus implicitly assume a

single peak. The application of a smoothing algorithm concentrates the distribution into

those areas which are most likely given the entire tracking sequence, and the result is that

peaks caused by temporary clutter distractions tend to be greatly reduced in size. The

distribution is then more approximately uni-modal, and its mean is a good estimator for

the object con�guration.

The sequence-based and two-pass smoothing algorithms of chapter 7 were tested in

section 7.2 on page 118 on sequences where the state distribution periodically diverges

to form several hypotheses and all but one of these competing hypotheses ultimately dies

out. Both algorithms successfully smoothed the test sequences, with slightly improved

accuracy from the two-pass algorithm, and this suggests that for tasks of this kind the

sequence-based algorithm should be used, given its greater conceptual and computational

simplicity. It is anticipated that the two-pass algorithm will come into its own as more

complex distributions come to be used while tracking, and more complex state estimates

are required than a single con�guration at each time-step. A situation could arise where

the state density repeatedly splits into competing hypotheses and then merges again, for

example if two similar objects move in front of one another. The sequence-based algorithm

would be very unlikely to preserve the structure of the trajectories; instead it would tend

to choose the most likely single path. The two-pass algorithm, on the other hand, by

computing a richer representation of the past history, would be more likely to keep all

the likely hypotheses and only reject genuine clutter. It may also be desirable to estimate

sample-set variances, either to detect periods of uncertainty, for example due to partial

occlusion of an object, or for purposes of parameter estimation as described in section 8.5

below, and the two-pass algorithm seems better suited to this task. Further experimentation

is necessary to con�rm this, however, since as presented, the sequence-based algorithm has

complexity O(N) and the two-pass smoother O(N

2

). It may be that using a much larger

value of N for the sequence-based smoother will produce more accurate estimates at lower

computational cost. Alternatively it may be possible to �nd some way of reducing the

complexity of the two-pass smoother without greatly reducing its e�ectiveness.
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8.5 Learning mixed-state motion models

The mixed-state models used in chapters 5 and 6 were constructed by a combination of

dynamical learning using hand-segmented training sequences for individual ARP models

and hand-crafted parameter-setting for the discrete transition matrices. In some situations

it would be preferable to learn the entire model using a joint estimation procedure. In fact,

this is possible using an EM algorithm related to that used in (North and Blake, 1998) for

single-state learning from noisy measurements, and it is the subject of current research.

The EM algorithm makes use of the smoothing algorithms from chapter 7 and requires

estimates of the state variance as well as the mean. Preliminary research shows that the

variance estimates are considerably less accurate than the mean estimates for given sample-

set size N , so it may be that techniques related to those described in section 8.3 will be

necessary to improve the e�ciency of the sampler.

8.6 Towards a tracker-driven user-interface

Both chapters 5 and 6 demonstrate hand-trackers as applications for the Condensation

algorithm. Some additional development would still be necessary to produce an acceptable

fully automatic hand-tracker which could be used as an input device. We take as an ex-

ample the problem of using hand-tracked input to drive a drawing package as discussed in

section 5.3 on page 85. The system in chapter 5 is clearly too slow to function e�ectively

in real time with current hardware, but using the importance-sampling framework of chap-

ter 6, real-time operation might be feasible. The challenge is to combine real-time tracking

with a more comfortable hand-position than the rigidly outstretched pose used in chap-

ter 6, and it will probably be necessary to use a model-space with more than 4 dimensions

to achieve this, though the 12-dimensional space of section 5.3 may not be necessary. It will

be essential to include at least one signalling gesture, if only to distinguish between drawing

lines and moving the hand over the page without leaving a mark, and this could perhaps

be implemented using a discrete switching mechanism. In order to justify the inclusion of

a vision-driven interface it would be desirable to include some functionality which is not

already available using a mouse. Perhaps the simplest feature would be to allow variation of

stroke-width using some continuous hand-gesture, since the two degrees of freedom o�ered

by a mouse do not allow this control. More research is necessary to determine how well the

model-switching paradigm of chapter 5 scales when more gestures are added to the reper-
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toire, and indeed what forms of motion model must be built to describe gestures which are

useful in a user interface.

Before the system in chapter 6 can be used to control an interactive package it will

probably be necessary to devise a robust measure to determine whether or not the hand is

in the scene, which may be possible using some form of contour discriminant (MacCormick

and Blake, 1998). The discrete model would then be expanded to include a �fth state

(�gure 8.1), denoting the event that no hand is present in the scene. A better method

1 2

3 4

5

Figure 8.1: A �ve-state hand-tracking model encompasses the possibility that no

hand is present in the scene. States 1 and 2 denote tracking the left and right hand,

respectively, states 3 and 4 correspond to initialising a sample to start tracking with either

the left or the right model as in �gure 6.5 on page 104, and state 5 is entered when no hand

is present in the scene.

of accommodating deformations of the hand-template may also be possible, and this was
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discussed in section 6.4 on page 110.

8.7 Avenues of future research

A number of promising avenues of research are suggested by the work presented in this

thesis, and a few of them are detailed here:

� Measurement model. As has been mentioned several times the measurement mod-

els used here are somewhat unsatisfactory. Perhaps the most obvious change would

be to replace the purely edge-based observation densities with region-based mea-

surements. This might result in a tracker which could combine the robustness of

correlation-matching techniques with the attractive high-dimensional search proper-

ties of Condensation.

� Shape-space. A limitation of the trackers presented here has been their reliance on a

learned shape-space. This has been necessary to confer robustness against clutter, and

to avoid the problems of \tangling" evident in early lightly-constrained snake models.

While a learned shape-space may always provide the best performance in clutter, it

would be useful to have a \default" shape model, controlled by only a few parameters,

akin to the default motion models set out in chapter 2, so that Condensation could

be applied to general motion segmentation problems in which the object's shape-space

is not known beforehand.

� Kinematic models. One straightforward alternative to the linear and 2D kinematic

models used in preceding chapters would be full 3D kinematic models, which could for

example be used for full-body person tracking. This would require explicit occlusion

reasoning in the measurement density, which would be a straightforward extension.

One might expect better performance across degeneracies in the observations than

is provided by uni-modal trackers like the EKF. For example, a tracker using a 3D

model to follow a person's arm might receive no information about the rotation angle

of the arm when the elbow is straight. An EKF tracker would be forced to commit

to a single estimate of the rotation angle, and if this was wrong when the elbow bent

once again, the tracking might fail. A Condensation tracker on the other hand

might spread the hypotheses to cover all possible rotation angles and thus follow the

bending elbow in any con�guration.
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� Hierarchical sampling. There are two obvious circumstances in which a hierarchical

sampling scheme might be useful. The �rst arises when the shape model is hierarchical;

for example in the full-body person tracking scenario described above, the position of

the arms is strongly constrained by the position of the torso. It may be possible to

search for the torso �rst, and only after a distribution of likely torso positions is found

return to the image to search for arm positions conditional on the torso location.

Similarly a multi-scale approach might allow gross localisation of the object at coarse

scale which would permit searching over much smaller regions of state-space at �ner

scale. This hierarchical approach would be expected to greatly cut down on image

measurements, and thus make a more e�cient tracker, and also might bring additional

robustness to clutter. It may be that hierarchical sampling schemes can be developed

using a mechanism similar to importance sampling.

� Very high accuracy tracking. In some applications, notably for �lm special ef-

fects, it is desirable to compute a very accurate estimate of an object's outline, ideally

to sub-pixel accuracy around the whole contour. The use of fairly low-dimensional

shape models in this thesis has precluded the localisation of the bounding contour of

an object to this degree of precision. It might be possible to re�ne the rougher esti-

mates provided by standard Condensation to produce very high quality estimates.

This could also lead to more sophisticated observation models, for example including

explicit modelling of motion blur using the velocity estimates produced by the tracker.

� Graphical models. As mentioned in section 8.5 it would be appealing to be able to

learn mixed-state models without manual segmentation of the discrete labels. A recent

advance in research into sequential inference and learning has been the development of

\graphical models" which allow complex topologies of nodes representing observations,

posterior distributions and conditional dependencies. Currently graphical models can

only be constructed with discrete or Gaussian representations of probability distri-

butions (both HMMs and Kalman �lters are special cases of graphical models). It

may be possible to combine the idea of graphical models with the particle-set prop-

agation techniques of Condensation and a modi�ed learning algorithm to permit

non-Gaussian densities throughout a complex topology of conditional distributions.
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8.8 Conclusion

The Condensation algorithm presented in chapter 3 of this thesis has been demonstrated

to have performance in clutter which is signi�cantly better than that of existing tracking

methods based on Kalman �lters. Perhaps more interesting, however, is the simplicity

and generality of the algorithm, which allows straightforward extensions as described in

chapters 5 and 6. The interest shown in the statistical and signal processing communities

to improving the e�ciency of Condensation-like algorithms, which was summarised in

section 8.3, is a testament to the wide range of applications of this approach to Bayesian

�ltering. Within the �eld of computer vision many avenues of research could be explored

leading from the work in this thesis, and some of these have been discussed in this chap-

ter. The implementation of region-based observation models for Condensation as well

as performing mixed-state learning are the subjects of current research, and the general

problem of algorithm e�ciency is also being explored. The applicability of mixed-state

Condensation to the emerging �eld of perception of action is also of great interest, and

it is hoped that as we gain familiarity with the algorithm more potential applications will

become apparent.



A

Derivations and proofs

A.1 Derivation of the sampling rule

The correctness of the sampling rule (3.4) on page 35 is proved by �rst deriving two lemmas

from the independence assumption (3.2). (This is similar to the derivation found in (Bar-

Shalom and Fortmann, 1988), except that our independence assumptions are explicitly

speci�ed.)
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(Taking (3.3) at time t and integrating w.r.t. Z

t

yields the reduction of the second term in

line 2.) Now, using (3.3) again gives the result.

Lemma 2
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Proof:

p(X

t

;Z

t�1

jX

t�1

) = p(X

t

jX

t�1

)p(Z

t�1

jX

t�1

)

from (3.2) so

p(X

t

jZ

t�1

;X

t�1

) = p(X

t

jX

t�1

) = p(X

t

jX

t�1

);

using the Markov assumption (3.1).

Derivation of the propagation formula: consider

p(X

t

jZ

t

) =

p(Z

t

jX

t

;Z

t�1

)p(X

t

jZ

t�1

)

p(Z

t

jZ

t�1

)

= k

t

p(Z

t

jX

t

;Z

t�1

)p(X

t

jZ

t�1

)

= k

t

p(Z

t

jX

t

)p(X

t

jZ

t�1

) using lemma 1:

Now integrating w.r.t. X

t�1

gives

p(X

t

jZ

t

) = k

t

p(Z

t

jX

t

)p(X

t

jZ

t�1

):

The last term can be expanded:
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which is the required result.

A.2 Asymptotic correctness of the Condensation Algorithm

The Condensation algorithm is validated here by a probabilistic argument showing that

the sample-set representation of conditional density is correct, asymptotically, as the size

N of the sample set at each time-step gets large. The argument is based on the one by

Grenander et al. to justify their factored sampling algorithm for interpretation of static

images. They use the standard probabilistic tool of \weak convergence" (Rao, 1973) and

the \weak law of large numbers" to show that a posterior distribution inferred by factored
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sampling can be made arbitrarily accurate by choosing N su�ciently large. No formal

indication is given as to how large N should be for a given level of accuracy, something which

is determined in practice by experimentation. Kitagawa (1996) performs simple experiments

on simulated data from which he concludes that the mean value of a distribution can in

general be estimated using a sample-set size N much lower (he cites an order of magnitude)

than that necessary to get an accurate characterisation of the entire distribution.

In the proof that follows, the correctness proof for factored sampling of a static image is

made inductive so that it can be applied to successive images in a sequence. This would be

su�cient to apply several independent images to the estimation of a static underlying object.

A further generalisation takes account of the predictive step (step 2 of the Condensation

algorithm) that deals with the dynamics of an object in motion.

A.2.1 Factored sampling

The asymptotic correctness of the factored sampling algorithm (section 3.3 on page 39) is

expressed in a theorem of Grenander et al. (1991):

Theorem 3 (Factored sampling) If �p

0

p

z

is an (absolutely continuous) density function

(with � a suitable normalisation constant) then for any given value X

~p(X)! �p
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z

(X); weakly; as N !1

| pointwise, weak convergence of the density function to the required posterior.

(Recall ~p is the density function of the random variate X generated by factored sampling,

as de�ned in section 3.3.) The proof of the theorem was given by Grenander et al.

A.2.2 Dynamic extension of factored sampling

The �rst step in the extension for dynamic problems is to state a corollary of the theorem

above that generalises it slightly to the case where the prior is not known exactly but has

itself been simulated approximately.

Cor. 4 (Weak factored sampling) The sequence s

1

; : : : ; s

N

is now generated by sam-

pling from a density p

s

chosen such that

p

s

(X)! p

0

(X); weakly; as N !1;



Appendix A. Derivations and proofs 147

where convergence is uniform with respect to X. Provided p

z

is bounded, the random variate

X

0

generated from the fs

n

g as before has a density function ~p for which
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and convergence is uniform with respect to X.

The proof of this corollary is straightforward.

A.2.3 Propagation of approximated state density

First note that the samples s
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generated by the algorithm can themselves be regarded

as random variables. Using the corollary it is possible to establish that asymptotically the

probability density of any given s
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From now on the limit symbol `!' is used to denote weak, uniform convergence of density

functions as N ! 1. The correctness result is expressed in the theorem below. We �rst
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1

This assumption is not restrictive in practice but is a little inelegant and perhaps there is a way to do

without it.
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In step 2 of the algorithm the random dynamical step is applied to s
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and this is the required density function for s
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, establishing the inductive step as required.

Finally the ground instance is straightforward. Initial samples s
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are drawn in step

1 from the prior p
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so that, after step 2 of the algorithm, the s
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as required.

Note that convergence has not been proved to be uniform in t. For a given �xed t, there

is convergence as N !1 but nothing is said about the limit t!1. In practice this could

mean that at later times t larger values of N may be required, though that could depend

also on other factors such as the nature of the dynamical model.
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