
3D position, attitude and shape input using video tracking of hands and
lips

Andrew Blake1and Michael Isard1

Robotics Research Group, University of Oxford.

ABSTRACT

Recent developments in video-tracking allow the outlines of mov-
ing, natural objects in a video-camera input stream to be tracked
live, at full video-rate. Previous systems have been available to
do this for specially illuminated objects or for naturally illuminated
but polyhedral objects. Other systems have been able to track non-
polyhedral objects in motion, in some cases from live video, but
following only centroids or key-points rather than tracking whole
curves. The system described here can track accurately the curved
silhouettes of moving non-polyhedral objects at frame-rate, for ex-
ample hands, lips, legs, vehicles, fruit, and without any special
hardware beyond a desktop workstation and a video-camera and
framestore.

The new algorithms are a synthesis of methods in deformable
models, B-spline curve representation and control theory. This
paper shows how such a facility can be used to turn parts of the
body — for instance, hands and lips — into input devices. Rigid
motion of a hand can be used as a 3D mouse with non-rigid gestures
signalling a button press or the “lifting” of the mouse. Both rigid
and non-rigid motions of lips can be tracked independentlyand used
as inputs, for example to animate a computer-generated face.

INTRODUCTION

The advent of general-purpose workstations with integral video-
camera and real-time framestore presents an opportunity for a low-
cost approach to position, attitude and shape input. This can be
achieved without special hardware by using software for real-time
tracking of the live video signal, processed at full video-field rate,
50Hz in systems like the one reported here.

Real-time video tracking has been achieved for line-drawings
[15] and polyhedral structures [19] and for simple, natural features
such as road-edges [10]. Commercial systems (e.g. Watsmart, Ox-
ford Metrics) are available which track artificial markers on live
video. Natural point features (e.g. on a face) but not curves,
have been tracked at 10Hz using a workstation assisted by image-
processing hardware [3]. Curve trackers [17] have been demon-
strated on modest workstations but slower than frame-rate.

1Department of EngineeringScience, University of Oxford, Parks Rd, Oxford OX1
3PJ, UK.

Two new algorithms are presented in this paper which allow
effective, agile tracking of curves in live video data, at 50Hz, on a
modest workstation (SUN IPX plus Cohu video-camera and Dat-
acell S2200 framestore) without additional hardware. The possi-
bility of tracking curves within a Kalman filtering framework was
raised by Szeliski and Terzopoulos [23]. Kalman filters comprise
two steps: prediction and measurement assimilation. Prediction
employs assumptions about object dynamics to extrapolate past
motion from one video frame to the next. Assimilation blends mea-
surements from a given frame with the latest available prediction.
An excellent introduction to this powerful methodology is given
by Gelb [13]. Our first algorithm applies such a filter to curves
represented by B-splines, to track both rigid and non-rigid motions.

The second algorithm is a “system identification algorithm”
based on ideas from adaptive control theory [2] and “maximum
likelihood estimation” in statistics [22]. Previous approaches to
learning shape variability have used statistical models to represent
a family of possible shapes [14, 9] but statically. In contrast the
learning method reported here is dynamic, using and modelling
temporal image sequences. Example motions are tracked by a
general-purpose tracker based on the assumption of default object
dynamics. The tracked motion is used as a training set for the new
algorithm which estimates the underlying dynamics of the train-
ing motion. The learned dynamics are then used in the tracker’s
predictor which then enjoys enhanced tracking capability for mo-
tions similar to those in the training set. The learning process can
be repeated to bootstrap trackers of successively increasing perfor-
mance.

The effectiveness of the algorithms in generating agile track-
ers which are resistant to distraction from background clutter is
demonstrated in this paper and on the accompanying video. The
final section of the paper illustrates two of the possible applications
for graphical input: a 3D mouse driven by natural hand movements
and a lip-tracker for use in automating animation.

PROBLEM FRAMEWORK AND NOTATION

The tracker is an estimator for a moving, piecewise-smooth image-
plane curve:

r(s; t) = (x(s; t); y(s; t)):

Following the tracking work of others [21, 8], the curve representa-
tion is in terms of B-splines. Quadratic splines with the possibility
of multiple knots for vertices are used here.

A given curve is parameterised as a B-spline

x(s) = B

T

(s)X and y(s) = B

T

(s)Y; 0 � s � N

whereX = (X1; ::;XN

c

)

T and similarly for Y with N
c

= N for
closed curves and N

c

= N + d for open ones (with appropriate

variations where multiple knots are used to vary curve continuity).
The elements ofX andY are simply vectors of x and y coordinates
respectively from the set of control points (X

m

; Y

m

) for the B-
spline. The vector B(s) consists of blending coefficients defined
by

B(s) = (B1(s); :::;BN

c

(s))

T

(1)

where each B
m

is a B-spline basis function [11, 6] appropriate to
the order of the curve and its set of knots.

Tracking
The tracking problem is now to estimate the motion of some

curve — in this paper it will be the outline of a hand or of lips. The
underlying curve — the physical truth — is assumed to be describ-
able as a B-spline of a certain predefined form with control points
X(t);Y(t) varying over time. The tracker generates estimates of
those control points, denoted X̂(t); Ŷ(t) and the aim is that those
estimates should represent a curve that, at each time-step, matches
the underlying curve as closely as possible. The tracker consists, in
accordance with standard practice in temporal filtering [13, 4], of
two parts: a system model and a measurement model. These will
be spelt out in detail later. Broadly, the measurement model speci-
fies the positions along the curve at which measurements are made
and how reliable they are. The system model specifies the likely
dynamics of the curve over time, relative to some average shape or
“template” [12] whose control points are given by (X(t);Y(t)),
and which is generated by an interactive drawing tool, drawing over
a single video frame.

Rigid body transformations
A tracker could conceivably be designed to allow arbitrary vari-

ations in control point positions over time. This would allow
maximum flexibility in deforming to moving shapes. However,
particularly for complex shapes requiring many control points to
describe them, this is known to lead to instability in tracking [7].
Furthermore, it is not necessary to allow so much freedom. A
moving, outstretched hand, for instance, provided the fingers are
not flexing, is an approximately rigid, planar shape. It is known
that, under orthographic projection, the image of such a shape has
only 6 degrees of freedom [25, 18], so provided perspective effects
are not too strong, a good approximation to the curve shape as it
changes over time can be obtained by specifying just 6 numbers.
They form a vector denotedQ expressing the affine transformation
that is applied to the template to get to the current shape. In this
representation, the template itself is simplyQ = (0; 0; 1; 1;0; 0)T .
Transformations betweenQ and (X;Y) can be made by applying
some matrices M;W (see appendix):

�

X

Y

�

=WQ and Q =M

�

X

Y

�

: (2)

Non-planar rigid shapes can also be treated in a similar way
to planar ones except that then Q must be an 8-vector, related
to the control points by an appropriately defined 2N

c

� 8 W -
matrix. Alternatively, freedom for rigid motion can be restricted, for
example to allow only zoom and translation, and then Q becomes
a 3-vector, with an accompanying 2N

c

� 3 W -matrix. Nonrigid
motion can also be handled in a similar way, by choosing a Q
representation that represents both the rigid and non-rigid degrees
of freedom of the shape. This is needed, for instance, to allow
finger movements in hand tracking, or to follow lip movements. It
is crucial therefore to allow exactly the right degrees of freedom
for nonrigidity, neither too few resulting in excessive stiffness, nor
too many leading to instability. Previous snake-based methods
for handling non-rigid motion [17] allowed far too many degrees
of freedom which leads to instability, quite unusable for real-time

tracking. Further detail on handling of non-rigid motion is given
later.

TRACKER FRAMEWORK

This section describes how the dynamics of the curve are modelled,
how the measurement process is modelled, and how the two are
brought together to make a curve tracker.

Our model of curve motion is a second order equation driven
by noise, as used widely for modelling in control theory [1]. The
choice of a second order model includes constant velocity motion,
decay and damped oscillation. These motions can be present inde-
pendently for each of the six degrees of freedom of rigid motion.
In the case of oscillation, for instance, there may be 6 independent
modes present, each with its own natural frequency and damping
rate. In addition to the characteristic oscillation, the “stochastic”
element of the model adds in uncertainty, as a smoothed random
walk, and so allows a given model to represent a whole class of
motions. A major attraction of this type of model is compatibility
with Kalman filtering. A Kalman filter, consisting of a prediction
and a measurement assimilation phase, makes use of just such a
model as its predictor.

Second order dynamics are convenientlywritten in discrete time
[1] using a “state vector” X

n

, defined in terms of shapeQ relative
to the templateQ:

X

n

=

�

Q

n�1 �Q

Q

n

�Q:

�

(3)

Successive video frames are indexed n = 1;2; 3; ::.
Now the dynamics of the object are defined by the following

difference equation:

X

n+1 = AX

n

+

�

0

w

n

�

: (4)

The matrix coefficient A is a 12 � 12 matrix, defining the deter-
ministic part of the dynamics; its eigenvectors represent modes,
and its eigenvalues give natural frequencies and damping constants
[1]. This matrix appears again later, in the tracker, which mirrors
equation (4) in its prediction component. At each time n, w

n

is an independent, normally distributed, 6-vector of random vari-
ables, with covariance matrix C . It is this covariance matrix C that
specifies the random part of the dynamical model — the degree of
randomness injected into each of the affine degrees of freedom.

Measurement of video features
Given an estimated curve r̂(s), expressed in terms of Q̂, the

measurement process at time t consists of casting rays simulta-
neously along several normals n(s) to the estimated curve. The
normal vectors n(s) at each measurement point on the curve are
calculated in the standard manner for B-spline curves [11], by dif-
ferentiating to find the tangent vector and then rotating through 90o.
Grey-level values in the video-input framestore are read to measure
the (signed) distance �(s) of a particular grey-level feature along
the curve normal. Typically the feature is a high contrast edge,
though other features can also be used [17]. In our system, the
highest contrast feature along the normal is chosen within a cer-
tain window, typically of width �40 pixels, on either side of the
estimated curve. Each position measurement is assumed to have
an associated error distribution, with a root-mean-square value of
� pixels. The individual measurements made on each normal are
then aggregated to form a combined “virtual” measurement Z in
theQ-space:

Z =

m=NN

�

X

m=0

�(m=N

�

)H(m=N

�

)

T

where N
�

is the number of measurements made (at equal intervals)
along each B-spline span,N is the number of spans as before, and

H(s) = (n(s)
B(s))

T

W;

where n(s) is the curve normal vector at a particular point of mea-
surement andB(s) is the vector of B-spline blending function de-
fined in (1). The projection matrix W that was defined in (2) has the
effect here of referring 2D measurements intoQ-space, so that they
can be applied, in the assimilation phase of the tracker, to update
the estimatedQ-vector. (Note: the operation
 denotes the “Kro-
necker product”1.) The n(s) weighting in the virtual measurement
Z has the effect (and this can be shown rigorously) of “pulling”
the tracked curve along the normal only. Such a weighting along
the normal reflects the fact that any displacement tangential to a
smooth curve is unobservable, the well-known “aperture problem”
of visual motion [16].

Tracking algorithm
The tracking algorithm, a standard “steady state Kalman filter”

[13], consists of iterating the following equation:

X̂

n+1 = AX̂

n

+K

�

Z

n+1

0

�

;

The somewhat non-standard aspect of the algorithm is the 12� 12
“Kalman gain” matrix K , defined in the appendix, which has to
be designed to match the state-space measurement vector Z. The
gainK depends on the system’s matrix coefficientsA;C and on the
reliability and density of measurements along the tracked contour,
and is constant over time in the “steady state” case considered here.
Allowing time-varying gain is useful to take accountof intermittent
failures in the measurementprocess [7], but that is outside the scope
of this paper.

Default tracker
The tracking algorithm described above requires system matri-

ces A;C to be specified. These are not known in advance and the
whole purpose of the framework being set up here is to estimate
them. However, for the estimation process, a stream of data from a
tracked object is needed — for which a tracker is required! Clearly,
estimation must be a bootstrap process, beginning with a default
tracker based on default values of A;C .

A natural default setting for the deterministic part of the dy-
namics is to assume constant velocity for all degrees of freedom,
realised by setting

A =

0 I

�I 2I

!

where I is the 6 � 6 identity matrix. A natural default can also be
defined for the random part of the dynamics. It is reasonable, as a
default, to assume that the magnitude of the random component is
uniform over the image plane, with no particular directional bias.
For that case, it is known [7] that

C = cMH

�1
M

T

where the “metric” matrixH is defined in the appendix. This leaves
just one constant — c — to be chosen to fix C .

Now the default tracker has been specified except for the values
of certain constants. Typically the number of measurements per
B-spline span is set to N

�

= 3, a value which allows our tracker to

1The Kroneckerproduct [5]A
 B of two matricesA;B is obtained by replacing
each element a of A with the submatrix aB. The dimensions of this matrix are thus
products of the corresponding dimensions ofA;B.

run at video-field rate, on a SUN IPX workstation, with 20 or more
control points.

The system and measurement constants c and � also remain to
be chosen. The following workable values that were used for the
hand-tracking experiments reported later:

� = 10:0 pixels and c = 1:0 pixels2

— further details on choice of constants are given elsewhere [7].

LEARNING MOTION AND TRAINING TRACK-
ERS

Training consists of using the default tracker to gather a sequenceof
m images at the image sampling frequency of 50Hz. The result of
tracking is then a sequence of mQ-vectors Q1; :::;Qm

, which are
the data from which system parameters A;C , are estimated. Once
A, C are obtained incorporating them in a tracker in the way that
was just described.

It follows from definitions in equations (3) and (4) that the
12� 12 matrix A has the form:

A =

0 I

A0 A1

!

; (5)

where A0; A1 are 6� 6 submatrices. Together with C , they are es-
timated as the solution of a least-squares algorithm. Unfortunately,
details of the derivation and principles of the algorithm cannot be
given here for lack of space. However it is of a type that is some-
what standard in stochastic system identification [2]. It corresponds
to maximising the probabilistic “likelihood” [22] of the data with
respect to the settings of A;C .

Practically, the important point is the algorithm itself, which is
straightforward. It should be borne in mind that this algorithm is
preparatory to filtering and is therefore done offline. Efficiency is
not therefore a major consideration. The algorithm has three steps.

Step 1: matrix moments A set of matrix moments

S

ij

=

m�2
X

n=1

(Q

n+i

�Q)(Q

n+j

�Q)

T

; i; j = 0;1; 2

is computed from the time-sequence of Q-vectors that serve as the
data for learning the parameters A;C .

Step 2: calculate A The A-matrix is calculated simply by
solving a set of simultaneous equations to obtain the submatrices
A0, A1:

S20 � A0S00 �A1S10 = 0 (6)

S21 � A0S01 �A1S11 = 0: (7)

Now A0, A1 form the full matrix A as in equation (5).

Step 3: calculate C Using the value of A just computed, C
can be estimated directly:

C =

1
m� 2

m�2
X

n=1

(Q
n+2 �A0Qn

�A1Qn+1) :

(Q
n+2 �A0Qn

� A1Qn+1)T :

10 20

seconds

radians0.2

0

-0.1

-0.2

0.1

10 20

seconds

0.2

0.1

0

-0.1

-0.2

radians

a) b) c) d)

Figure 1: Learning horizontal oscillation. a) Training sequence of a tracked hand captured at 50Hz (full video field-rate) in oscillatory
motion. The initial frame of the hand is shown with a subsequence of the positions of the tracked curve overlaid. The centroid’s horizontal
position is displayed as a time-sequence in b). c) Simulation of the learned system: note that the motion swept out when the learned dynamics
are simulated is similar to the motion in the training set. d) Centroid’s horizontal position for the sequence in c).

LEARNING TRANSLATION

Model parameters are inferred from data by the statistical learning
algorithm already described. The resulting tracker is specifically
sensitive to a particular motion, in this case translation. This time
the learnt motion will also be resynthesised and compared with the
original. The horizontal motion training set, shown as a graph in
figure 1b, is then used in the estimation procedure of the previous
section, to obtain parameters A;C . The resulting A-matrix has
several modes as in the zoom example. The mode which is most
significant in the sense that it decays most slowly, represents a
damped oscillation whose period is about 1:7 seconds. This is
close to the apparent periodicity of the data in which there are
between 12 and 13 cycles over 20 seconds, a period of about 1:6
seconds.

As a further check, taking the learned model, we can simu-
late it by generating pseudo-random gaussian noise and using it to
“energise” the model whose coefficients are the learned values of
A;C . This is illustrated in figure 1c,d. It is clear that the simu-
lated process is similar in amplitude and natural frequency to the
data set. However it is more “random” — it does not capture the
phase-coherence of the training set. Such behaviour is typical of
this algorithm and should be regarded as a feature rather than a
bug. It indicates that the algorithm has generalised the example
motion, capturing its broad characteristics over shorter time-scales
without attempting to replicate the entire signal. A stronger model
that captured the entire signal would be too strong — the model
would compete, in the tracker, with the measurement process and
overwhelm it. The remaining influence of the video measurements
would then be too weak for effective tracking. (Note: this argument
can be put rigorously, but space does not permit.)

Tracking
The following experiments demonstrate the power of incorpo-

rating learned motion into a curve tracker. This time, a training set
of vertical rigid motion is generated and used to learn motion coeffi-
cients A;C , much as in the previous example of learned horizontal
motion. The trained tracker, incorporating the learned motion is
then to be tested against the un-trained, default tracker. It will be
clear that the tracker has been trained to track rapid oscillation.

The test sequences are generated consisting of rapid, vertical,
oscillatory motions of a hand. The sequencesare stored on video so
that fair comparisons can be made, using the standard sequences,
of the performance of different trackers. Two sequences are made:
one of oscillatory motion of gradually increasing frequency — a
“chirp” — and the other of regular oscillation against irrelevant
background features — “clutter”. Results of the tests are shown in
figures 2 and 3. The increased agility and robustness of the trained

tracker is also clear in the accompanying video.

NONRIGID MOTION

The methods illustrated so far for learning and tracking rigid motion
can be extended to non-rigid motion. The algorithms described
earlier continue to apply, but now theQ-space must be redefined to
parameterise non-rigid motion of a curve.

Key-frames
TheQ-space is extended by redefining the transformation ma-

trices M;W from equation (2). The W matrix (see appendix for
details) must be given additional columns each reflecting an addi-
tional degree of freedom for non-rigid motion. This then increases
the dimension of theQ vector from 6 to some larger number. The
extra columns of W are derived from “key-frames”, typical non-
rigid deformations, on which the tracked contour is positioned in-
teractively, as in figure 4. Each of the additional components of the
Q-vector then represents the proportion of each of the key-frames
in the mix. (Note that the template and key-frames do not need
to be mutually orthogonal, merely linearly independent). During
tracking, the first 6 components of the Q̂

n

-vector report on the
rigid motion, and the remaining components report on non-rigid
motion, so rigid and non-rigid motion can be monitored somewhat
independently.

Lips
The key-frames above generate a Q-space that can be used in

a default tracker capable of tracking slow speech and sufficient
to gather data for training. As a demonstration of the effect of
training, trackers were trained for the lip-motions that accompany
the sounds “Pah” and “Ooh”, and tested on the sound “Pah”. The
selectivity of the resulting tracker is shown in figure 5. It is clear
from these results that the training effect for individual sounds is
strong. This suggests that training for typical lip-movements that
accompany speech should have a strong effect on tracking speaking
lips and this is explored in the next section. The selective training
effect could potentially be exploited in its own right for simple lip-
reading (e.g. of commands or key-words) an idea that has been
explored by others [20] using rather different mechanisms.

APPLICATIONS

There are potentially many applications for real-time position, at-
titude and shape input using the new algorithms for learning and
tracking. Two are explored here: the use of a hand as a 3D mouse

Untrained-nonrigid Untrained-rigid Trained

Snapshot: 12.2 seconds

0.2

-0.2

-0.1

0.1

0
20 secs

radians

0.2

-0.2

-0.1

0.1

0
20 secs

radians

0.2

-0.2

-0.1

0.1

0
20 secs

radians

Time-course of vertical position

Figure 2: Trained tracker for rigid motion, tested with rapid oscillations. A “chirp” test motion, consisting of vertical oscillations of
progressively increasing frequency, is tracked by each of three trackers: untrained-nonrigid, untrained-rigid and trained. For the untrained
trackers, lock is lost after 12.2 seconds whereas the trained tracker is still tracking. Graphs of vertical position against time clearly shows
the lost lock at about 12 seconds for the untrained trackers. The trained tracker maintains lock throughout the time-sequence.

and the tracking of lips for control of animation. Of course suc-
cessful hard-ware realisations of a 3D mouse or “bat” have already
been developed [26]. The advantages of the system proposed here
is that on the new generation of workstations with built-in cameras
it involves no additional hardware, and that it is software recon-
figurable for example by adding finger-gestures to indicate button
presses and perhaps even grasping manoeuvres of the sort used in a
“dataglove”. Facial animation in real time has been achieved previ-
ously using reflective markers [27] but that supplies measurements
at distinct points only. The advantage of a system like the one
demonstrated here is that it can measure, in real time, the motion of
entire curves.

3D mouse
Both rigid and nonrigid motion of a hand can be used as a 3D

input device. The freedom of movement of the hand is illustrated
in figure 6, with rigid motion picked up to control 3D position
and attitude, and nonrigid motion signalling button pressing and
“lifting”. The tracker output — the components of Q̂ varying over
time — have successfully been used to drive a simulated object
around a 3D environment and this is illustrated on the accompanying
video.

Lips
The feasibility of tracking lip movements frontally, when lip

high-lighter is worn, was demonstrated by Kass et al [17]. Our
system can do this at video-rate. This paradigm can be extended by
using high-lighter on a number of facial features, as Terzopoulos
and Waters [24] did. It is expected that this could be used with our
real-time trainable tracker to build an effective front-end for actor-
driven animation, without recourse to expensive virtual-reality input

devices.
Tracking lips side-on, whilst arguably less informative, has the

advantageof working in normal lighting condition without cosmetic
aids. This could be used to turn the mouth into an additional work-
station input-device. Learning and selectivity with single sounds
were demonstrated earlier. Here, complexity is increased by train-
ing on connected speech. Two-stage training was used. In the first
stage, the default tracker followed a slow-speech training sequence
which is then used, via the learning algorithm, to generate a tracker.
This tracker is capable of following speech of medium speed. It is
then used to follow a medium-speed training sequence, from which
dynamics for a full-speed tracker are obtained.

The trained tracker is then tested against the default tracker,
using a test sequence entirely different from the training sequences.
Two components of lip motion are extracted from the tracked mo-
tion. The larger of these corresponds approximately to the degree
to which the lips are parted. This component is plotted both for
the default tracker and the trained one in figure 7. It is clear from
the figure that the trained filter is considerably more agile. In pre-
liminary demonstrations in which the signal is used to animate a
head (frontal view), the default filter is able to follow only very
slow speech, whereas the trained filter successfully follows speech
delivered at a normal speed. The increased agility and robustness
of the trained tracker is made clear in the accompanying video.

CONCLUSIONS

New algorithms have been described for live tracking of moving
objects from video. The first algorithm is a tracker based on the
control-theoretic “Kalman filter”. It allows particular dynamics,
modelled by a stochastic differential equation, to be used predic-

Untrained-nonrigid Untrained-rigid Trained

Snapshot: 9.0 seconds

0.2

-0.2

-0.1

0.1

0
20 secs

radians

0.2

-0.2

-0.1

0.1

0
20 secs

radians

0.2

-0.2

-0.1

0.1

0
20 secs

radians

Time-course of vertical position

Figure 3: Trained tracker for oscillatory rigid motion, tested against clutter. The two untrained trackers and the trained tracker are
compared here using a “clutter” test-sequence. After 9.0 seconds, the nonrigid-untrained tracker is distracted by background clutter and
loses lock, but the rigid-untrained and the trained trackers continue to track successfully.

Template Key-frame 1 Key-frame 2

Figure 4: Keyframes. A weighted sum of key-frames is added to the Q vector for use in a default tracker for non-rigid motion.

tively in the tracker. The default tracker, for instance, assumes
constant velocity rigid motion driven randomly. It is crucial that
the constraints of rigid-body motion are incorporated — represented
in our algorithm by theQ-space. This is what allows stable track-
ing, for which free parameters must be limited, to be combined
with the apparently conflicting requirement of the large number of

control points needed for accurate shape representation.
The second algorithm is the most original contribution. It is a

learning algorithm that allows dynamical models to be built from
examples. When such a model is incorporated into a tracker, agility
and robustness to clutter are considerably increased.

Finally, the advent of workstations with integral cameras and

a) b)
-50

0

50

100

4 8

seconds

Test sequence "Pah" - Filter "Pah"

c)

d) e)
-50

0

50

100

4 8

seconds

Test sequence "Pah" - Filter "Ooh"

f)

Figure 5: Filter selectivity for sounds. A test sequence in which the sound “pah” is repeated is tracked by a filter trained on the sound
“pah”. a) shows the area swept out by successivepositions of the tracked contour. Note that the filter successfully tracks the opening/shutting
deformation of the mouth. The motion signal (b) is plotted in terms of an appropriate scalar component of estimated motion; it shows pairs
of troughs (shutting of the mouth) and peaks (opening), one for each “pah”. For instance, approximately 4.1s after the start of the signal
the tracked contour (c) is clearly still locked. Corresponding pictures for a tracker trained on the sound “Ooh”, fed with the same “Pah”
test-sequence, are shown in d),e),f). It is clear (d) that only lateral translation is tracked — the nonrigid deformation containing the speech
information is lost, as expected. There is minimal opening/shutting response (e). After 4.1s (f) lock has been lost.

framestores brings an opportunity for these algorithms to be put
to work. Unadorned body parts become usable input devices for
graphics. This has potential applications in user-interface design,
automation of animation, virtual reality and perhaps even low-
bandwidth teleconferencing and the design of computer aids for the
handicapped.

Acknowledgements
We are grateful for the use of elegant software constructed by Rupert Curwen, Nicola
Ferrier, Simon Rowe, Henrik Klagges and for discussions with Roger Brockett, Yael
Moses, David Reynard, Brian Ripley, Richard Szeliski, Andrew Zisserman. We
acknowledge the support of the SERC, the EC Esprit programme (SECOND) and the
Newton Institute, Cambridge.

REFERENCES
[1] K. J. Astrom and B. Wittenmark. Computer Controlled Systems. AddisonWesley,

1984.

[2] K. J. Astrom and B. Wittenmark. Adaptive control. Addison Wesley, 1989.

[3] A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland. Visually controlled
graphics. IEEE Trans. Pattern Analysis and Machine Intell., in press, 1993.

[4] Y. Bar-Shalom and T.E. Fortmann. Tracking and Data Association. Academic
Press, 1988.

[5] Stephen Barnett. Matrices: Methods and Applications. Oxford University Press,
1990.

[6] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An Introduction to Splines for use in
Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1987.

[7] A. Blake, R. Curwen, and A. Zisserman. A framework for spatio-temporal
control in the tracking of visual contours. Int. Journal of Computer Vision,
11(2):127–145, 1993.

[8] R. Cipolla and A. Blake. The dynamic analysis of apparent contours. In Proc.
3rd Int. Conf. on Computer Vision, pages 616–625, 1990.

[9] T.F. Cootes, C.J. Taylor, A. Lanitis, D.H. Cooper, and J. Graham. Buiding and
using flexible models incorporating grey-level information. In Proc. 4th Int.
Conf. on Computer Vision, pages 242–246, 1993.

[10] E.D. Dickmanns and V. Graefe. Applications of dynamic monocular machine
vision. Machine Vision and Applications, 1:241–261, 1988.

[11] I.D. Faux and M.J. Pratt. Computational Geometry for Design and Manufacture.
Ellis-Horwood, 1979.

[12] M. A. Fischler and R. A. Elschlager. The representation and matching of pictorial
structures. IEEE. Trans. Computers, C-22(1), 1973.

[13] Arthur Gelb, editor. Applied Optimal Estimation. MIT Press, Cambridge, MA,
1974.

[14] U. Grenander, Y. Chow, and D. M. Keenan. HANDS. A Pattern Theoretical Study
of Biological Shapes. Springer-Verlag. New York, 1991.

[15] C. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors, Active
Vision, pages 59–74. MIT, 1992.

[16] B.K.P. Horn. Robot Vision. McGraw-Hill, NY, 1986.

[17] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In
Proc. 1st Int. Conf. on Computer Vision, pages 259–268, 1987.

[18] J.J. Koenderink and A.J. Van Doorn. Affine structure from motion. J. Optical
Soc. of America A., 8(2):337–385, 1991.

[19] D.G. Lowe. Robust model-based motion tracking through the integration of
search and estimation. Int. Journal of Computer Vision, 8(2):113–122, 1992.

[20] K. Mase and A. Pentland. Automatic lip-reading by optical flow analysis. Media
Lab Report 117, MIT, 1991.

a) b) c)

d) e) f)

Figure 6: The unadorned hand as a 3D mouse. A hand in its home position (a) can move on the xy-plane of the table (b) to act as a regular
mouse but can also rise in the z direction (c) and the zooming effect is picked and used to compute z. Rotation can also be tracked (d).
Note that measured affine distortions in the image plane are straightforwardly translated back into 3D displacements and rotations, as the
demonstration of hand-controlled 3D motion on the accompanying video shows. Nonrigid motion tracking can be used to pick up signals.
For instance (e) signals a button-press and (f) signals the analogue of lifting a conventional mouse to reposition it.

-100

0

100

seconds4 8

Un-trained lip tracker

-100

0

100

seconds
4 8

Fully trained lip tracker

Figure 7: Trained lip tracker. Training a tracker for side-on viewing of speaking lips greatly enhances tracking performance. The graphs
show plots from the default and trained filters respectively of one deformation component of the lips during connected speech. The component
corresponds to the degree to which the mouth is open — the space of deformations spanned by the first two templates in figure 4. Note the
considerable loss of detail in the default filter, and occasional overshoots, compared with the trained filter. (The sentence spoken here was
“In these cases one would like to reduce the dependence of a sensory information processing algorithm on these constraints if possible.”.)

[21] S. Menet, P. Saint-Marc, and G. Medioni. B-snakes: implementation and appli-
cation to stereo. In Proceedings DARPA, pages 720–726, 1990.

[22] A. Papoulis. Probability and Statistics. Prentice-Hall, 1990.

[23] R. Szeliski and D. Terzopoulos. Physically-based and probabilistic modeling for
computer vision. In B. C. Vemuri, editor, Proc. SPIE 1570, Geometric Methods
in Computer Vision, pages 140–152, San Diego, CA, July 1991. Society of
Photo-Optical Instrumentation Engineers.

[24] D. Terzopoulos and K. Waters. Physically-based facial modelling, analysis and
animation. J. Visualization and COmputer Animation, 11(2), 1990.

[25] S. Ullman and R. Basri. Recognition by linear combinations of models. IEEE
Trans. Pattern Analysis and Machine Intelligence, 13(10):992–1006, 1991.

[26] C. Ware and D.R. Jessome. Using the bat: a six-dimensional mouse for object
placement. In Proc. Graphics Interface, pages 119–124, 1988.

[27] L. Williams. Performance-driven facial animation. In Proc. Siggraph, pages
235–242. ACM, 1990.

A. Matrices M;W for rigid planar shape
Matrices M;W convert B-spline control points (X;Y) to and from

the affine 6-vectorQ representation, and are defined to be:

W =

�

1 0 X 0 0 Y

0 1 0 Y X 0

�

and
M = (W

T

HW)

�1
W

T

H

whereN
c

-vectors 0 and 1 are defined by:

0 = (0;0; ::;0)T 1 = (1;1; ::; 1)T :

and

H =

Z

N

0

�

1 0
0 1

�

 (B(s)B(s)

T

) ds:

See also [7].

B. Calculating the gain

Filter gain K is calculated by iterating to convergence the “discrete
Ricatti equation” [13] for this problem, which can be shown to be:

P

n+1 =

�

(AP

n

A

T

+ C

0

)

�1
+

1

�

2
J

0

�

�1

where C0 =

0 0

0 C

!

and J

0

=

J 0

0 0

!

and J =

m=NN

�

X

m=0

H(m=N
�

)

TH(m=N
�

)

to obtain P
1

. Any reasonable initial condition, such as P0 = 0 will
do, and the equation is bound to converge provided the learned dynamics
represented by the matrix A are stable. Finally the steady state Kalman
Gain for the measurement Z can be shown to be K = (1=�2

)P

1

.

