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Abstract
Continuous quantities are ubiquitous in models of real-
world phenomena, but are surprisingly difficult to reason 
about automatically. Probabilistic graphical models such 
as Bayesian networks and Markov random fields, and algo-
rithms for approximate inference such as belief propaga-
tion (BP), have proven to be powerful tools in a wide range of 
applications in statistics and artificial intelligence. However, 
applying these methods to models with continuous variables 
remains a challenging task. In this work we describe an exten-
sion of BP to continuous variable models, generalizing par-
ticle filtering, and Gaussian mixture filtering techniques for 
time series to more complex models. We illustrate the power 
of the resulting nonparametric BP algorithm via two applica-
tions: kinematic tracking of visual motion and distributed 
localization in sensor networks.

1. Introduction
Graphical models provide a powerful, general framework for 
developing statistical models in such diverse areas as bioin-
formatics, communications, natural language processing, 
and computer vision.28 However, graphical formulations 
are only useful when combined with efficient algorithms 
for inference and learning. Such algorithms exist for many 
discrete models, such as those underlying modern error cor-
recting codes and machine translation systems.

For most problems involving high-dimensional continu-
ous variables, comparably efficient and accurate algorithms 
are unavailable. Alas, these are exactly the sorts of problems 
that arise frequently in areas like computer vision. Difficulties 
begin with the continuous surfaces and illuminants that digi-
tal cameras record in grids of pixels, and that geometric recon-
struction algorithms seek to recover. At a higher level, the 
articulated models used in many tracking applications have 
dozens of degrees of freedom to be estimated at each time 
step.41, 45 Realistic graphical models for these problems must 
represent outliers, bimodalities, and other non-Gaussian sta-
tistical features. The corresponding optimal inference pro-
cedures for these models typically involve integral equations 
for which no closed form solution exists. It is thus necessary 
to develop families of approximate representations, and algo-
rithms for fitting those approximations.

In this work we describe the nonparametric belief propa-
gation (NBP) algorithm. NBP combines ideas from Monte 
Carlo3 and particle filtering6, 11 approaches for represent-
ing complex uncertainty in time series, with the popular 
belief propagation (BP) algorithm37 for approximate infer-
ence in complex graphical models. Unlike discretized 
approximations to continuous variables, NBP is not limited 
to low-dimensional domains. Unlike classical Gaussian 
approximations, NBP’s particle-based messages can rep-
resent, and consistently reason about, the multimodal 

distributions induced by many real-world datasets. And 
unlike particle filters, NBP can exploit the rich nonsequen-
tial structure of more complex graphical models, like those 
in Figure 1.

We begin in Section 2 by reviewing graphical models, 
BP, Monte Carlo methods, and particle filters. Section 3 
then develops the two stages of the NBP algorithm: a belief 
fusion step which combines information from multiple par-
ticle sets, and a message propagation step which accounts 
for dependencies among random variables. We review a 
pair of previous real-world applications of NBP in Section 
4: kinematic tracking of visual motion (Figures 6 and 7) 
and distributed localization in sensor networks (Figure 8). 
Finally, we conclude in Section 5 by surveying algorithmic 
and theoretical developments since the original introduc-
tion of NBP.

2. Inference in Graphical Models
Probabilistic graphical models decompose multivariate 
distributions into a set of local interactions among small 
subsets of variables. These local relationships produce 
conditional independencies which lead to efficient learn-
ing and inference algorithms. Moreover, their modular 
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Figure 1. Particle filters assume variables are related by a hidden 
Markov model (top). The NBP algorithm extends particle filtering 
techniques to arbitrarily structured graphical models, such as those 
for arrays of image pixels (bottom left) or articulated human motion 
(bottom right).
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2.2. Belief propagation
For graphs that are acyclic or tree-structured, the desired 
conditional distributions p(xi | y) can be directly calculated 
by a local message-passing algorithm known as belief propa-
gation (BP).37, 50 At each iteration of the BP algorithm, nodes 
j Î V calculate messages  mji(xi) to be sent to each neighbor-
ing node i Î  G( j):

The outgoing message is a positive function defined on Xi. 
Intuitively, it is a (possibly approximate) sufficient statistic 
of the information that node j has collected regarding xi. At 
any iteration, each node can produce an approximation  qi(xi) 
to the marginal distribution p(xi | y) by combining incoming 
messages with the local evidence potential:

These updates are graphically summarized in Figure 2. 
For tree-structured graphs, the approximate marginals, 
or beliefs, qi (xi) will converge to the true marginals p(xi | y) 
once messages from each node have propagated across 
the graph. With an efficient update schedule, the mes-
sages for each distinct edge need only be computed once, 
and BP can be seen as a distributed variant of dynamic 
programming.

Because each iteration of the BP algorithm involves only 
local message updates, it can be applied even to graphs 
with cycles. For such graphs, the statistical dependen-
cies between BP messages are not accounted for, and the 
sequence of beliefs qi(xi) will  not converge to the true mar-
ginals. In many applications, however, the resulting loopy 
BP algorithm37 exhibits excellent empirical performance.8, 

14, 15,  49 Recently, several theoretical studies have provided 
insight into the approximations made by loopy BP, estab-
lishing connections to other  variational inference algo-
rithms47 and partially justifying its application to graphs 
with cycles.20, 23, 34, 50, 51

The BP algorithm implicitly assumes messages mji(xi) have 
a finite parameterization, which can be tractably updated 
via the integral of Equation 2. Most implementations 

structure provides an intuitive language for expressing 
domain-specific knowledge about variable relationships 
and facilitates the transfer of modeling advances to new 
applications.

Several different formalisms have been proposed that 
use graphs to represent probability distributions.28, 30, 47, 50  
Directed graphical models, or Bayesian networks, are widely 
used in artificial intelligence to encode causal, generative 
processes. Such directed graphs provided the basis for the 
earliest versions of the BP algorithm.37 Alternatively, undi-
rected graphical models, or Markov random fields (MRFs), 
provide popular models for the symmetric dependencies 
arising in such areas as signal processing, spatial statistics, 
bioinformatics, and computer vision.

2.1. Pairwise Markov random fields
An undirected graph G is defined by a set of nodes V and a 
corresponding set of undirected edges E (see Figure 1). Let 
Γ(i)  ∆= { j | (i, j) Î E} denote the neighborhood of a node i Î V. 
MRFs associate each node i Î V with an unobserved, or hid-
den, random variable xi Î Xi. Let x = {xi | i Î V} denote the 
set of all hidden variables. Given evidence or observations y, 
a pairwise MRF represents the posterior distribution p(x | y) 
in factored form:

Here, the proportionality sign indicates that p(x, y) may 
only be known up to an uncertain normalization constant, 
chosen so that it integrates to one. The positive potential 
functions ψij(xi, xj) > 0 can often be interpreted as soft, local 
constraints. Note that the local evidence potential ψi(xi, y) 
does not typically equal the marginal distribution p(xi | y), 
due to interactions with other potentials.

In this paper, we develop algorithms to approximate the 
conditional marginal distributions p(xi | y) for all i Î V. These 
densities lead to estimates of xi, such as the posterior mean 
[xi | y], as well as corresponding measures of uncertainty. 
We focus on pairwise MRFs due to their simplicity and popu-
larity in practical applications. However, the nonparametric 
updates we present may also be directly extended to models 
with higher-order potentials.

xi

y

qi (xi) ∝ ψi(xi, y) Π
j∈Γ(i)

mji(xi)

mji(xi) ∝ ÚXj

ψij(xi, xj)ψj(xj, y) Π
k∈Γ( j)\ i

mkj(xj) dxj

xj

y

xi

Figure 2. Message-passing recursions underlying the BP algorithm. Left: Approximate marginal (belief) estimates combine the local 
observation potential with messages from neighboring nodes. Right: A new outgoing message (red) is computed from all other incoming 
messages (blue).
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assume each hidden variable xi takes one of K discrete values 
(|Xi| = K), so that messages and marginals can be represented 
by K-dimensional vectors. The message update integral then 
becomes a matrix–vector product, which in general requires 
O(K2) operations. This variant of BP is sometimes called the 
sum–product algorithm.30

For graphical models with continuous hidden vari-
ables, closed-form evaluation of the BP update integral 
is only possible when the posterior is jointly Gaussian. 
The resulting Gaussian BP algorithm, which uses linear 
algebra to update estimates of posterior mean vectors 
and covariance matrices, generalizes Kalman smoothing 
algorithms for linear dynamical systems.2 More gener-
ally, a fixed K-point discretization sometimes leads to an 
effective histogram approximation of the true continuous 
beliefs.13, 14 However, as K must in general grow exponen-
tially with the dimension of Xi, computation of the dis-
crete messages underlying such approximations can be 
extremely demanding.

2.3. Monte Carlo methods
By using random samples to simulate probabilistic models, 
Monte Carlo methods3 provide flexible alternatives to varia-
tional methods like BP. Given a target distribution p(x  | y), 
many inference tasks can be expressed via the expected 
value Ep[ f (x)] of an appropriately chosen function. Given L 
independent samples  from p(x | y), the desired sta-
tistic can be approximated as follows:

This estimate is unbiased, and converges to Ep[ f (x)] almost 
surely as L → ∞. For the graphical models of interest here, 
however, exact sampling from p(x | y) is intractable.

Importance sampling provides an alternative based on a 
proposal distribution q(x), chosen so that q(–x) > 0 wherever 
p(–x  | y) > 0. Defining the importance weight function as 
w(x)  =  –p(x | y)/q(x), where p(x | y) ∝ –p(x | y) up to some poten-
tially unknown normalization constant, the expectation of 
Equation 4 can be rewritten as follows:

Importance sampling thus estimates the target expectation 
via a collection of L weighted samples .

For high-dimensional models like the full joint distri-
bution of Equation 1, designing tractable proposal dis-
tributions that closely approximate p(x | y) is extremely 
challenging. Even minor discrepancies can produce 
widely varying importance weights w(l), which may in turn 
cause the estimator of Equation 5 to have a huge variance 
even for large  L. Instead, we use importance sampling to 
locally approximate intermediate computations in the BP 
algorithm.

2.4. Particle filters
Our approach is inspired by particle filters, an approximate 
inference algorithm specialized for hidden Markov models 
(HMMs). As depicted graphically in Figure 1, an HMM mod-
els a sequence of T observations y = {y1, …, yT} via a corre-
sponding set of hidden states x:

Recognizing this factorization as a special case of the pair-
wise MRF of Equation 1, the “forward” BP messages passed 
to subsequent time steps are defined via the recursion

For continuous Xt where this update lacks a closed form, 
particle filters6, 11 approximate the forward BP messages 
mt−1, t(xt) via a collection of L weighted samples, or particles, 

. Importance sampling is used to recursively 
update the particle locations and weights via a single, 
forward pass through the observations. A variety of proposal 
distributions q(xt+1 | xt, yt+1), which aim to approximate 
p(xt+1 | xt,  yt+1), have been suggested.6 For example, the 
“bootstrap filter” samples , and incorporates 
evidence via weights .

For the simple algorithm sketched above, each message 
update introduces additional approximations, so that the 
expected variance of the importance weights w(l)

t increases 
over time. Particle filters avoid such sample depletion via a 
resampling operation, in which the highest-weight particles 
at time t determine a larger proportion of the outgoing mes-
sage particles  . The bootstrap filter then becomes:

After such resampling, outgoing message particles are 
equally weighted as , l = 1, …, L. By stochastically 
selecting the highest-weight particles multiple times, resam-
pling dynamically focuses the particle filter’s computational 
resources on the most probable regions of the state space.

3. Nonparametric BP
Although particle filters can be adapted to an extremely wide 
range of dynamical models and observation types, they are 
specialized to the structure of temporal filtering problems. 
Conversely, loopy BP can in principle be applied to graphs of 
any structure, but is only analytically tractable when all hidden 
variables are discrete or jointly Gaussian. In this section, we 
describe an NBP algorithm26, 44 that generalizes sequential 
Monte Carlo methods to arbitrary graphs. As in regularized 
particle filters,11 we approximate the true BP messages and 
beliefs by nonparametric density estimates. Importance 
sampling and MCMC approximations then update these 
sample-based messages, propagating information from local 
observations throughout the graph.

3.1. Nonparametric representations
Consider again the BP algorithm of Section 2.2, and suppose 

(8)
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that messages mji(xi) are approximated by a set of weighted, 
discrete samples. If Xi is continuous and these messages are 
constructed from independent proposal distributions, their 
particles will be distinct with probability one. For the mes-
sage product operation underlying the BP algorithm to pro-
duce sensible results, some interpolation of these samples 
to nearby states is thus needed.

We accomplish this interpolation, and ensure that mes-
sages are smooth and strictly positive, by convolving raw 
particle sets with a Gaussian distribution, or kernel:

Here, N(x; m, L) denotes a normalized Gaussian density 
with mean m and covariance L, evaluated at x. As detailed 
later, we use methods from the nonparametric density 
estimation literature to construct these mixture approxi-
mations.42 The product of two Gaussians is itself a scaled 
Gaussian distribution, a fact which simplifies our later 
algorithms.

3.2. Message fusion
We begin by assuming that the observation potential is a 
Gaussian mixture. Such representations arise naturally 
from learning-based approaches to model identification.14 
The BP belief update of Equation 3 is then defined by a 
product of d = (|G(i)| + 1) mixtures: the observation poten-
tial ψi(xi,  y), and messages mji(xi) as in Equation 9 from 
each neighbor. As illustrated in Figure 3, the product of d 
Gaussian mixtures, each containing L components, is itself 
a mixture of Ld Gaussians. While in principle this belief 
update could be performed exactly, the exponential growth 
in the number of mixture components quickly becomes 
intractable.

The NBP algorithm instead approximates the product 
mixture via a collection of L independent, possibly impor-
tance weighted samples   from the “ideal” 
belief of Equation 3. Given these samples, the bandwidth 
Li of the nonparametric belief estimate (Equation 10) is 
determined via a method from the extensive kernel den-
sity estimation literature.42 For example, the simple “rule 
of thumb” method combines a robust covariance estimate 
with an asymptotic formula that assumes the target density 
is Gaussian. While fast to compute, it often oversmooths 

multimodal distributions. In such cases, more sophisti-
cated cross-validation schemes can improve performance.

In many applications, NBP’s computations are domi-
nated by the cost of sampling from such products of 
Gaussian mixtures. Exact sampling by explicit construc-
tion of the product distribution requires O(Ld) operations. 
Fortunately, a number of efficient approximate samplers 
have been developed. One simple but sometimes effec-
tive approach uses an evenly weighted mixture of the d 
input distributions as an importance sampling proposal. 
For higher-dimensional variables, iterative Gibbs sam-
pling algorithms are often more effective.44 Multiscale 
KD-tree density representations can improve the mixing 
rate of Gibbs samplers, and also lead to “epsilon-exact” 
samplers with accuracy guarantees.25 More sophisticated 
importance samplers5 and multiscale simulated or par-
allel tempering algorithms39 can also be highly effective. 
Yet more approaches improve efficiency by introducing 
an additional message approximation step.19, 22, 31 By  first 
reducing the complexity of each message, the product can 
be approximated more quickly, or even computed exactly. 
When ψi(xi, y) is a non-Gaussian analytic function, we can 
use any of these samplers to construct an importance 
sampling proposal from the incoming Gaussian mixture 
messages.

3.3. Message propagation
The particle filter of Section 2.4 propagates belief estimates 
to subsequent time steps by sampling . 
The consistency of this procedure depends critically on the 
HMM’s factorization into properly normalized conditional 
distributions, so that ∫p(xt+1 | xt)dxt+1 = 1 for all xt Î Xt. By def
inition, such conditional distributions place no biases on xt. 
In contrast, for pairwise MRFs, the clique potential ψij(xi, xj) 
is an arbitrary nonnegative function that may influence the 
values assumed by either linked variable. To account for 
this, we quantify the marginal influence of ψij(xi, xj) on xj via 
the following function:

If ψij(xi, xj) is a Gaussian mixture, ψij(xj) is simply the mixture 
obtained by marginalizing each component. In the common 
case where ψij(xi, xj) = ~ψij(xi − xj) depends only on the differ-
ence between neighboring variables, the marginal influence 
is constant and may be ignored.

As summarized in the algorithm of Figure 4, NBP 
approximates the BP message update of Equation 2 in two 
stages. Using the efficient algorithms discussed in Section 
3.2, we first draw L independent samples  from a partial 
belief estimate combining the marginal influence func-
tion, observation potential, and incoming messages. For 
each of these auxiliary particles , we then interpret the 
clique potential as a joint distribution and sample par-
ticles   from the conditional density proportional to

.
Particle-based approximations are only meaningful 

when the corresponding BP messages mji(xi) are finitely inte-
grable. Some models, however, contain nonnormalizable 

Figure 3. A product of three mixtures of L = 4 1D Gaussians. Although 
the 43 = 64 components in the product density (thin lines) vary widely 
in position and weight (scaled for visibility), their normalized sum 
(thick line) has a simple form.
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potentials that nevertheless encode important constraints. 
For example, the kinematic tracking and sensor localiza-
tion applications considered in Section 4 both involve 
“repulsive” potentials, that encourage pairs of variables to 
not take similar values. In such cases, the NBP algorithm 
in Figure 4 instead stores the weighted particles needed 
to evaluate mji(

–xi) at any location –xi of interest. These mes-
sages then influence subsequent iterations via importance 
weighting.

As illustrated in Figure 2, the BP update of message 
mji(xi) is most often expressed as a transformation of the 
incoming messages from all other neighboring nodes 
k Î G( j)\i. From Equations 2 and 3, however, it can also be 
expressed as

This transformation suggests an alternative belief sampling 
form of the NBP algorithm, in which the latest belief esti-
mate provides a proposal distribution for auxiliary particles 

. Overcounting of mij(xj) may then be avoided 
via importance weights . Computationally, 
belief sampling offers clear advantages: computation of 
new outgoing messages to d neighbors requires O(dL) oper-
ations, versus the O(d2L) cost of the approach in Figure 4. 
Statistically, belief sampling also has potentially desirable 
properties,26, 29 but can be less stable when the number of 
particles L is small.22

4. Illustrative Applications
In this section we show several illustrative examples of 
applications that use NBP to reason about structured col-
lections of real-valued variables. We first show examples 
of kinematic tracking problems in computer vision, in 
which the variables represent the spatial position of parts 
of an object. We then show how a similar formulation can 
be used for collaborative self-localization and tracking 
in wireless sensor networks. Other applications of NBP 
include deformable contour tracking for medical image 
segmentation,46 image denoising and super-resolution,38 
learning flexible models of dynamics and motor response 
in robotic control,17 error correcting codes defined for 
real-valued codewords,31, 43 and sparse signal reconstruc-
tion using compressed sensing principles.4 NBP has also 
been proposed as a computational mechanism for hier-
archical Bayesian information processing in the visual 
cortex.32

4.1. Visual tracking of articulated motion
Visual tracking systems use video sequences from one 
or more cameras to estimate object motion. Some of the 
most challenging tracking applications involve articu-
lated objects, whose jointed motion leads to complex 
pose variations. For example, human motion capture is 
widely used in visual effects and scene understanding 
applications.33 Estimates of human, and especially hand, 
motion are also used to build more expressive computer 
interfaces.48

To illustrate the difficulties, we consider a toy 2D object 
localization problem in Figure 5. The model consists of 
nine nodes: a central circle, and four jointed arms com-
posed of two rectangular links. The circle node’s state x0 
encodes its position and radius, while each rectangular 
link node’s state xi encodes its position, angle, width, and 
height. Each arm prefers one of the four compass direc-
tions, arms pivot around their inner joints, and geometry is 
loosely enforced via Gaussian pairwise potentials ψij(xi , xj); 
for details see Isard.26

Our goal is to find the object in a sea of clutter (white 
shapes in Figure 5) whose elements look exactly like com-
ponents of the object. This mimics the difficulties faced 
in real video sequences: statistical detectors for individ-
ual object parts often falsely fire on background regions, 
and global geometric reasoning is needed to disambigu-
ate them. Applied to this model, NBP’s particles encode 
hypotheses about the pose xi of individual object parts, 
while messages use geometric constraints to propagate 
information between parts. When all of the true object’s 
parts are visible, NBP localizes it after a single iteration. By 
using Gaussian mixture potentials ψi(xi , y) that allow occa-
sional outliers in observed part locations, NBP remains 
successful even when the central circle is missing. In this 
case, however, it takes more iterations to propagate infor-
mation from the visible arms.

Kinematic tracking of real hand motion poses far 
greater challenges. Even coarse models of the hand’s 
geometry have 26 continuous degrees of freedom: each 
finger’s joints have four angles of rotation, and the palm 

Figure 4. Nonparametric BP update for the message mji(xi) sent from 
node j to node i, as in Figure 2.

Given input messages mkj(xj) for each k Î G( j )\i, which may be either 

kernel densities mkj(xj) = {xkj
(l), wkj

(l), Λkj}
L
l=1 or analytic functions, construct an 

output message mji(xi) as follows:

	 1.	�D etermine the marginal influence ϕij(xj) of Equation (11).

	 2.	D raw L independent, weighted samples from the product

Optionally resample by drawing L particles with replacement 

according to , giving evenly weighted particles.

	 3.	� If ψij(xi, xj) is normalizeable (∫ψij(xi, xj = x–) dxi < ∞ for all x– Î Xj), 

construct a kernel-based output message: 

(a) �For each auxiliary particle , sample an outgoing particle

Using importance sampling or MCMC methods as needed.

(b) �Set to account for importance weights in steps 2–4(a).

(c) �Set Λi via some bandwidth selection method (see Silverman42).

4.	 Otherwise, treat mji(xi) as an analytic function

parameterized by the auxiliary particles .
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may take any 3D position and orientation.48 The graphi-
cal models in Figure 6 instead encode hand pose via the 
3D pose of 16 rigid bodies.45 Analytic pairwise potentials 
then capture kinematic constraints (phalanges are con-
nected by revolute joints), structural constraints (two 
fingers cannot occupy the same 3D volume), and Markov 
temporal dynamics. The geometry of individual rigid bod-
ies is modeled via quadric surfaces (a standard approach 
in computer graphics), and related to observed images via 
statistical color and edge cues.45

Because different fingers are locally similar in appear-
ance, global inference is needed to accurately associate 
hand components to image cues. Discretization of the 6D 
pose variable for each rigid body is intractable, but as illus-
trated in Figure 6, NBP’s sampling-based message approx-
imations often lead to accurate hand localization and 
tracking. While we project particle outlines to the image 
plane for visualization, we emphasize NBP’s estimates are 
of 3D pose.

Finally, Figure 7 illustrates a complementary approach 
to multicamera tracking of 3D person motion.41 While the 
hand tracker used rigid kinematic potentials, this graphi-
cal model of full-body pose is explicitly “loose limbed,” 
and uses pairwise potentials estimated from calibrated, 
3D motion capture data. Even without the benefit of 
dynamical cues or highly accurate image-based likeli-
hoods, we see that NBP successfully infers the full human 
body pose.

4.2. Sensor self-localization
Another problem for which NBP has been very successful 

is sensor localization.22 One of the critical first tasks in 
using ad-hoc networks of wireless sensors is to deter-
mine the location of each sensor; the high cost of manual 
calibration or specialized hardware like GPS units makes 
self-localization, or estimating position based on local in-
network information, very appealing. As with articulated 
tracking, we will be estimating the position of a number 
of objects (sensors) using joint information about the 
objects’ relative positions. Specifically, let us assume that 
some subset of pairs of sensors (i, j) Î E are able to measure 
a noisy estimate of their relative distance (e.g., through 
signal strength of wireless communication or measuring 
time delays of acoustic signals). Our measurements yij tell 
us something about the relative positions xi, xj of two sen-
sors; assuming independent noise, the likelihood of our 
measurements is

We can see immediately that this likelihood has the form 
of a pairwise graphical model whose edges are the pairs of 
sensors with distance measurements. Typically we assume 
a small number of anchor sensors with known or partially 
known position to remove translational, rotational, and 
mirror image ambiguity from the geometry.

Figure 6. Articulated 3D hand tracking with NBP. Top: Graphical 
models capturing the kinematic, structural, and temporal 
constraints relating the hand’s 16 rigid bodies. Middle: Given a 
single input image, projected estimates of hand pose after one 
(left) and four (right) NBP iterations. Bottom: Two frames showing 
snapshots of tracking performance from a monocular video 
sequence.

Figure 5. Detection of a toy, four-armed articulated object (top 
row) in clutter. We show NBP estimates after 0, 1, and 3 iterations 
(columns), for cases where the circular central joint is either visible 
(middle row) or occluded (bottom row).
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A small 10-sensor network with 24 edges is shown in 
Figure  8, indicating both the true 2D sensor positions 
(nodes) and inter-sensor measurements (edges). The 
beliefs obtained using NBP are displayed on the right, by 
showing 500 samples from the estimated belief; the true 
sensor positions are also superimposed (red dots). The 
initial beliefs are highly non-Gaussian and often fairly 
diffuse (top row). As information propagates through the 
graph and captures more of the inter-sensor dependen-
cies, these beliefs tend to shrink to good estimates of the 
sensor positions. However, in some cases, the measure-
ments themselves are nearly ambiguous, resulting in a 
bimodal posterior distribution. For example, the sensor 
located in the bottom right has only three, nearly colin-
ear neighbors, and so can be explained almost as well by 
“flipping” its position across the line. Such bimodalities 
indicate that the system is not fully constrained, and are 
important to identify as they indicate sensors with poten-
tially significant errors in position.

5. Discussion
The abundance of problems that involve continuous variables 
has given rise to a variety of related algorithms for estimating 
posterior probabilities and beliefs in these systems. Here we 
describe several influential historical predecessors of NBP, 
and then discuss subsequent work that builds on or extends 
some of the same ideas.

As mentioned in Section 2.2, direct discretization of 
continuous variables into binned “histogram” poten-
tials can be effective in problems with low-dimensional 
variables.4 In higher-dimensional problems, however, 
the number of bins grows exponentially and quickly 
becomes intractable. One possibility is to use domain 
specific heuristics to exclude those configurations that 
appear unlikely based on local evidence.8, 14 However, if 
the local evidence used to discard states is inaccurate 
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Figure 7. Articulated 3D person tracking with NBP.41 Top: Graphical model 
encoding kinematic and dynamic relationships (left), and spatial and 
temporal potential functions (right) learned from mocap data. Middle: 
Bottom-up limb detections, as seen from two of four camera views. 
Bottom: Estimated body pose following 30 iterations of NBP.

Figure 8. NBP for self-localization in a small network of 10 sensors. Left: Sensor positions, with edges connecting sensor pairs with noisy 
distance measurements. Right: Each panel shows the belief of one sensor (scatterplot), along with its true location (red dot). After the first 
iteration of message passing, beliefs are diffuse with non-Gaussian uncertainty. After 10 iterations, the beliefs have stabilized near the true 
values. Some beliefs remain multimodal, indicating a high degree of uncertainty in that sensor’s position due to near-symmetries that remain 
ambiguous given the measurements.
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efficiency of Monte Carlo estimates given a set of samples. 
Another example, Hot Coupling,18 uses a sequential order-
ing of the graph’s edges to define a sequence of importance 
sampling distributions.

The intersection of variational and Monte Carlo meth-
ods for approximate inference remains an extremely active 
research area. We anticipate many further advances in the 
coming years, driven by increasingly varied and ambitious 
real-world applications.
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or misleading, these approximations will heavily distort 
the resulting estimates.

One advantage of Monte Carlo and particle filtering 
methods lies in the fact that their discretization of the 
state space is obtained stochastically, and thus has excel-
lent theoretical properties. Examples include statistical 
consistency, and convergence rates that do not depend 
on the dimension.10 While particle filters are typically 
restricted to “forward” sequential inference, the connec-
tion to discrete inference has been exploited to define 
smoothing (forward and backward) algorithms,6 and to 
perform resampling to dynamically improve the approxi-
mation.35 Monte Carlo approximations were also previ-
ously applied to other tree-structured graphs, including 
junction trees.9, 29

Gaussian mixture models also have a long history of use 
in inference. In Markov chains, an algorithm for forward 
inference using Gaussian mixture approximations was first 
proposed by Alspach and Sorenson1; see also Anderson 
and Moore.2 Regularized particle filters smooth each par-
ticle with a small, typically Gaussian kernel to produce a 
mixture model representation of forward messages.11 For 
Bayesian networks, Gaussian mixture-based potentials 
and messages have been applied to junction tree-based 
inference.12

NBP combines many of the best elements of these meth-
ods. By sampling, we obtain probabilistic approximation 
properties similar to particle filtering. Representing mes-
sages as Gaussian mixture models provides smooth esti-
mates similar to regularized particle filters, and interfaces 
well with Gaussian mixture estimates of the potential func-
tions.12, 14, 17, 38 NBP extends these ideas to “loopy” message 
passing and approximate inference.

Since the original development of NBP, a number of 
algorithms have been developed that use alternative 
representations for inference on continuous, or hybrid, 
graphical models. Of these, the most closely related is 
particle BP, which uses a simplified importance sam-
pling representation of messages, more closely resem-
bling the representation of (unregularized) particle 
filters. This form enables the derivation of convergence 
rates similar to those available for particle filtering,21 and 
also allows the algorithm to be extended to more general 
inference techniques such as reweighted message-pass-
ing algorithms.24

Other forms of message representation have also been 
explored. Early approaches to deterministic discrete mes-
sage approximation would often mistakenly discard states 
in the early stages of inference, due to misleading local 
evidence. More recently, dynamic discretization tech-
niques have been developed to allow the inference pro-
cess to recover from such mistakes by re-including states 
that were previously removed.7, 27, 36 Other approaches sub-
stitute alternative, smoother message representations, 
such as Gaussian process-based density estimates.40

Finally, several authors have developed additional ways 
of combining Monte Carlo sampling with the principles of 
exact inference. AND/OR importance sampling,16 for exam-
ple, uses the structure of the graph to improve the statistical 
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