

Autopilot: Automatic Data Center Management

Michael Isard

Microsoft Research Silicon Valley

misard@microsoft.com

ABSTRACT

Microsoft is rapidly increasing the number of large-scale web

services that it operates. Services such as Windows Live Search

and Windows Live Mail operate from data centers that contain

tens or hundreds of thousands of computers, and it is essential that

these data centers function reliably with minimal human

intervention. This paper describes the first version of Autopilot,

the automatic data center management infrastructure developed

within Microsoft over the last few years. Autopilot is responsible

for automating software provisioning and deployment; system

monitoring; and carrying out repair actions to deal with faulty

software and hardware. A key assumption underlying Autopilot is

that the services built on it must be designed to be manageable.

We also therefore outline the best practices adopted by

applications that run on Autopilot.

Categories and Subject Descriptors

C.2.4 [Computer-communication networks]: Distributed systens

– distributed applications, network operating systems

General Terms

Management, Design

Keywords

Automatic management, Cluster computing

1. INTRODUCTION
Microsoft is rapidly expanding the scope of its web-scale online

services. Windows Live Search was re-launched using an internal

back-end in January 2005, and Windows Live Mail (formerly

Hotmail) has seen a large growth in storage capacity over the last

few years. Several more web-scale services are currently in

development, and the total number of server computers managed

by Microsoft has increased very quickly over the last few years,

and will continue to grow.

The sudden growth of Microsoft‘s data center capacity at the same

time that several new service back-ends are being developed has

given us an opportunity to design a new in-house infrastructure

for automatic data center management. This infrastructure is

known as Autopilot. Its design was primarily motivated by the

need to keep the total cost of a data center, including operational

and capital expenses, as low as possible. This is partly achieved

by using more intelligent software to replace much of the

repetitive work previously handled by operations staff. We aim to

maintain as few people as possible on 24-hour call: our most

efficient services support many thousands of computers per

member of operations staff, and run on an 8x5 rather than 24x7

support schedule.

Increased reliability is an equally important benefit of automation.

Many data center failures are caused by human error, often

resulting from an attempt to fix an earlier problem. As more

failure management is moved to automated scripts, there is less

variability in the response to faults, and thus we can hope to make

the entire system more reliable and maintainable.

The first version of Autopilot described here concentrates on the

basic services needed to keep a data center operational:

provisioning and deployment; monitoring; and the hardware

lifecycle including repair and replacement. Autopilot supplies

mechanisms to automate all of these services, however policy —

for example, determining which computers should run which

software, or precisely defining and detecting failures that need to

be repaired — is mostly left to individual applications. Converting

legacy applications to work with new automatic management

software is a challenging problem. Autopilot has the luxury of

starting from a fresh application base, supporting mainly systems

that were built to conform to Autopilot‘s design principles.

Most of the technology used in Autopilot components is similar to

designs that have appeared in previously reported work. Our

overall approach to fault tolerance follows the Recovery Oriented

Computing model outlined in [3], and we adopt the crash-only

software methodology proposed in [4]. Our software deployment

strategy fits the framework advanced in [1]. There has been much

recent interest in ―autonomic‖ computing, and a survey of

commercial work in this area is given in [5], but the goals of that

community are more ambitious than those of Autopilot.

Autonomic computing looks forward to the day when most

configuration policy will be controlled automatically. As noted

above, this paper describes mostly mechanism to support

manually-determined policies. The factors that underlie our desire

to implement fault-tolerance in software on top of a large number

of unreliable commodity computers are similar to those described

in [2]. Many of the design practices we follow are standard

software-engineering methodology. Nevertheless, it is still a

challenge to combine all of these ideas into a fully automatic

system that can manage tens of thousands of computers 24 hours a

day for years at a time without any planned downtime for the

system as a whole.

This paper gives an overview of Autopilot‘s structure, but it does

not attempt to fill in the details: it would be impractical to try to

supply enough information here to allow even a skilled

practitioner to re-implement the whole system. Instead we have

tried to abstract and explain some of the high-level design

principles we adopt that let us write and maintain complex

software deployed in large-scale modern data centers. Section 2

outlines our design philosophy. Section 3 describes the typical

hardware configuration of our data centers. Section 4 gives an

overview of Autopilot‘s component structure, and Sections 5 to 7

examine each component in more detail. Section 8 provides a

brief case study showing how one application interacts with

Autopilot, and we discuss some lessons we learned along the way

in Section 9.

The named author participated in the design of several Autopilot

components, however this paper is primarily a report on the work

of others. The original conception, the vast bulk of the design, and

all the implementation of Autopilot were undertaken by product

groups at Microsoft, led by the Windows Live Search core team.

2. DESIGN PRINCIPLES
Traditionally, reliable systems have been built on top of fault-

tolerant hardware. The economics of the contemporary computing

industry dictate, however, that the cheapest way to build a very

large computing infrastructure is to amass a huge collection of

commodity computers. In exchange for lower capital expenditure

compared with the traditional approach, this results in hardware

that is much more prone to failures. This as an opportunity to

move more fault-tolerance into software, but we must employ

consistent design principles in order to be confident about the

reliability of the applications we deploy.

The two most important principles underlying the Autopilot

design are fault tolerance and simplicity:

 Since any component can fail at any time, the system must be

reliable enough to continue automatically with some

proportion of its computers powered down or misbehaving.

All vital state must be replicated, and any necessary fail-over

must be completely automatic. We aim to minimize critical

dependencies between components so that a temporary fault

in one service does not become a single point of failure and

disable an entire cluster.

The basic failure model we have assumed is non-Byzantine.

This is a consequence of the controlled environment within

our data centers. Data corruption problems can generally be

managed using checksums, so Byzantine faults tend to arise

when some replicas violate a protocol contract. Although this

type of failure does occur, it is more likely to be caused by

bugs than by the malicious hijacking of a small number of

processes. Consequently, problems are typically not confined

to a minority of replicas, and so Byzantine fault-tolerant

algorithms are of limited usefulness. We briefly revisit this

issue in Section 9.

 We believe that simplicity is as important as fault-tolerance

when building a large-scale reliable, maintainable system.

Often this means applying conservative design principles: in

many cases we rejected a complex solution that was more

efficient, or more elegant in some way, in favor of a simpler

design that was good enough. This requires constant

discipline to avoid unnecessary optimization, and unnecessary

generality. ―Simplicity‖ must always be considered in the

context of the entire system, since a solution that looks

simpler to a component developer may cause nightmares for

integration, testing, or operational staff.

Simplicity is also manifested in more basic ways. Where

components are configurable, the parameters are stored in

human-readable plain text files that are under the management

of the same version control system as source code and

documentation. (Autopilot components never use the

Windows Registry.) If a change in configuration is made, this

is done by a deployment procedure (see Section 5.2) with an

audit trail. We discourage the use of any interactive control

channel to a process that would allow configuration changes

to be made without generating an audit trail.

Where correctness is at stake we attempt not to cut corners even

when it introduces extra complexity. Of course every design is

only as ―correct‖ as the assumptions on which it is based,

including the assumption that there are no bugs in the code. No

algorithm can provide hard guarantees of correctness in a practical

system built on physical hardware, so it is impossible to do more

than provide ―best effort‖ service. We can however distinguish

between designs that make their assumptions explicit and those

that make implicit assumptions, for example that failures will not

happen in ―pathological‖ combinations. In a large system one

must expect all combinations of failures, so we aim to use designs

whose assumptions we understand, but that are simple enough

that we can hope to find all crucial bugs through careful review

and testing. At the same time we accept that no implementation is

foolproof, and the best we can achieve is to optimize for a

tolerable level of risk.

Our fault tolerance strategy requires that components must be

designed so any process can be killed unexpectedly without

destabilizing the system. Most of our components therefore treat

forced termination as the only exit mechanism and can

consequently omit clean shutdown code. Because processes must

be able to tolerate crashes, we are able to use assert statements

very liberally and, along with the resulting debugging benefits,

this can also help to simplify a design since there is no need to try

to recover from a damaged invariant. This is a special case of a

general principle of avoiding seldom-used failure paths in our

programs.

As explained in the Introduction, it was not a design requirement

that we provide all of the benefits of Autopilot to legacy code.

Legacy applications often assume reliable hardware, but by

designing new applications with automation in mind we can move

much of this reliance into software and thus reduce hardware

complexity and cost. Partly, this means advocating to application

designers the same principles of fault tolerance and simplicity that

are adopted in the Autopilot components. Applications must

expect their processes to be killed without warning, and where

possible, customer-facing services should continue, perhaps with

degraded operation, in the face of even large numbers (e.g. 50%)

of failed computers. Applications must use Autopilot interfaces

for reporting errors in order to benefit from automatic monitoring

and failure management. Applications must also be easy for

Autopilot to install and configure: in practice this means that an

application configuration must be entirely specified by files in the

local file system of the computer where the application is running.

3. HARDWARE CONFIGURATION
In common with other contemporary data center operators, we

buy and install computers in quantities of at least a rack. Each

computer conforms to one of a small set of standard specifications

including, for example, an ―application‖ configuration with

several processor cores and a few direct-attached hard drives, and

a ―storage‖ configuration with more disks per processor. A typical

―application‖ rack might contain 20 identical multi-core

computers, each with 4 direct-attached hard drives. Also in the

rack is a simple switch allowing the computers to communicate

locally with other computers in the rack, and via a switch

hierarchy with the rest of the data center. Finally each computer

has a management interface, either built in to the server design or

accessed via a rack-mounted serial concentrator. This ensures that,

at a minimum, it is possible for a remote software component to

power each computer on and off and install new Operating

System images.

The set of computers managed by a single instance of Autopilot is

called a cluster. At this point, the largest deployed Autopilot

clusters contain up to tens of thousands of computers, though

many are much smaller. There may be more than one cluster in a

data center, but we aim as far as possible to eliminate inter-

dependencies so that a failure in one Autopilot cluster is unlikely

to affect other services.

4. AUTOPILOT SYSTEM OVERVIEW
Autopilot is divided into several components, illustrated in Figure

1. This simplifies the overall design, and makes it easier to modify

parts of the Autopilot independent of the rest. However, because

the system is distributed, this organization has the potential to

introduce inconsistencies between the components.

Where information needs to be shared between components in a

distributed system, there is often a choice between designs that

allow weak consistency and those that require strong consistency.

Weak consistency can improve availability, since one component

may be able to operate for a while from cached data when another

is unavailable. However, strong consistency often allows simpler

designs. In the absence of strong consistency, faults such as a

transient partitioning of the network may allow components to

perform conflicting actions that must be resolved when the

partitioning is repaired. This leads to a need for conflict detection

and recovery logic, introducing extra complexity and adding code

paths that are not used except in failure cases.

The shared state held in Autopilot is deliberately kept fairly small,

and the system is designed to tolerate latencies of tens of seconds

or more for most actions. These choices allow us to make a simple

tradeoff between weak and strong consistency, as follows. All of

the information about the ―ground truth‖ state that the system

should be in, along with the logic to update this ground truth, is

held in a single strongly-consistent state machine called the

Device Manager that is typically distributed over 5–10 computers.

It is built on a well tested replicated state machine library with a

strict abstraction boundary so that bugs in the replication

mechanism are decoupled from bugs in the state machine

implementation. The library is lightweight (around 5,000 lines of

C++ in total) and uses the Paxos algorithm [6] to achieve

consensus between replicas, batching updates in order to get a

reasonable balance between latency and throughput.

The Device Manager stores the state that the system should be in,

however it does not itself take any actions to keep the cluster

synchronized with this ground truth. Instead Autopilot includes a

number of ―satellite‖ services. These satellites lazily perform

actions to bring themselves or their clients up to date when they

discover that the Device Manager state requires it. Similarly, if a

satellite discovers a fault or inconsistency in the cluster, it will not

attempt to rectify it but instead will report the problem to the

Device Manager. This allows Autopilot to integrate information

across the cluster and apply system-wide throttling or consistency

checks before deciding to take action. At that point, the Device

Manager updates its state, which will eventually result in a

satellite repair service noticing the update and taking appropriate

action.

The satellite services are themselves replicated, and may contain

private state. The Autopilot design partitions system state between

satellites and the Device Manager in such a way that the satellites

can keep their state weakly consistent without compromising

correctness.

Satellite services receive information from the Device Manager

using a ―pull‖ model. They regularly send lightweight messages to

the Device Manager that report their current status, and in

response are sent the relevant parts of the current Device Manager

ground truth. The use of regular ―heartbeat‖ messages makes the

Provisioning

Service

Deployment

Service

Device

Manager

Watchdog

Service

Collection Service

Cockpit

Application

Components

Core Autopilot

Components

Repair

Service

Figure 1: A schematic of the Autopilot system and

applications. Arrows show the flow of communication.

The Device Manager (Section 4) is the central system-wide

authority for configuration and coordination. The

Provisioning Service and Deployment Service (Section 5)

ensure that each computer is running the correct operating

system image and set of application processes. The

Watchdog Service and Repair Service (Section 6)

cooperate with the application and the Device Manager to

detect and recover from software and hardware failures.

The Collection Service and Cockpit (Section 7) passively

gather information about the running components and

make it available in real-time for monitoring the health of

the service, as well as recording statistics for off-line

analysis. (These monitoring components are ―Autopiloted‖

like any other application, and therefore communicate with

the Device Manager and Watchdog Service which provide

fault recovery, deployment assistance, etc., but this

communication is not shown in the figure for simplicity.)

design very robust to transient failures, since individual messages

can be lost without affecting eventual correctness. Sometimes a

state transition in the Device Manager will cause it to ―kick‖

remote services to request that they send a ―pull‖ query

immediately. This is simply an optimization that lets us ensure

that most satellite computers quickly learn about any required

actions, but any computers that do not receive the kick will still

learn of the state change through a later heartbeat. An alternative

―push‖ model would require the Device Manager to keep state for

every message recording which clients had so far received it: we

decided that the extra network traffic and latency incurred by the

―pull‖ design was an acceptable tradeoff in exchange for a simpler

Device Manager.

5. LOW-LEVEL SERVICES
A small number of operating system images are in use at any time

in a cluster. We use only stable commercial releases of Windows

Server operating systems. Each image also contains some basic

Autopilot configuration files, and some Autopilot-specific

Windows services, pre-installed and enabled on boot. The

configuration files contain, for example, the DNS names of

computers running core Autopilot components. The Windows

services are able to communicate with centralized Autopilot

components to ensure that the correct application processes are

installed and running on the computer. Network configuration and

name services are currently managed independently of Autopilot

using a standard replicated installation of Active Directory [7].

Every computer runs a local service, supplied by Autopilot, that

ensures the correct files are present on its local disk. This filesync

service is used extensively by Autopilot and applications to

transfer data between computers. The service acts both as a client

requesting files from remote machines, and as a server handling

such client requests. By using a dedicated service rather than

relying on an operating system component (such as the standard

Windows remote file access features) we gain better control over

logging of file transfers, and the ability to throttle transfers so a

computer or switch does not become unexpectedly overloaded.

A second local service on every computer, called the application

manager, makes sure that the correct processes are running. Each

application process is distributed as a standalone directory

containing all binaries, shared libraries and configuration files

necessary to for the process, along with a standard ‗start.bat‘

script that can be invoked to start it. There is no clean shutdown

code so a process is stopped simply by instructing Windows to

kill it and its children. The application manager reads a

configuration script and ensures that the designated binaries are

running. A process can be configured to run continuously (so it is

restarted if it exits for any reason) or periodically, e.g. once an

hour.

5.1 Operating System Provisioning
The Provisioning Service includes basic services such as DHCP

and network boot. It also contains a scanner that constantly probes

the network looking for new computers that have been plugged in.

On finding one, it consults the Device Manager to learn what

operating system image it should be running, then uses the

computer‘s management interface to install and boot the image,

and run burn-in tests. If these steps succeed, the Provisioning

Service informs the Device Manager. The newly provisioned

computer independently contacts the Device Manager to learn

what application binaries to fetch and run, as described in the

following sections. The computer‘s name is determined by its

position in the network hierarchy, which in turn is determined by

the rack (and slot in that rack) where it is plugged in. It is up to

the operator to ensure that the correct hardware configuration is

installed in each rack slot.

The Provisioning Service is configured to use several computers

for redundancy. These cooperate to elect a leader that carries out

the appropriate actions. The Provisioning Service is stateless, and

any necessary information is retrieved from the Device Manager

when the leader starts up. Weak consistency of the deployment

state during fail-over may cause some actions to be attempted

more than once, but this can be tolerated since any resulting

problems will eventually be detected and corrected by the normal

activity of the repair services.

5.2 Application deployment
The application defines a set of machine types that are present in

the cluster. Each type corresponds to a particular role that the

computer might take on: for example in Windows Live Search

these include ―web crawler,‖ ―front-end web server,‖ etc. The

Device Manager database stores the machine type of every

computer in the cluster. This mapping from computer to machine

type is currently manually and statically configured. Autopilot

does not perform migration or load balancing, though of course

applications frequently implement their own load balancers to

automatically distribute work among the computers of a given

machine type.

The only difference between machine types from the perspective

of deployment is the set of configuration files and application

binaries that should be present on the computer (in particular, a

machine type is not necessarily tied to a particular hardware

configuration). The application manager is responsible for reading

the configuration and making sure the appropriate processes are

running. Each such set of files is described using a configuration

manifest, stored in the Device Manager database. A computer can

store multiple manifests at once1, with one ―active,‖ and the

application manager will run the processes listed in the active

manifest. This allows new application versions to be pre-loaded

onto computers before they are scheduled to be enabled; also

recent previous versions are kept for a while to allow rapid

rollback to a known good state in the event of problems. The list

of manifests that should be stored on each computer is recorded in

the Device Manager along with the name of the computer‘s active

manifest.

The Deployment Service is a set of weakly consistent replicas each

of which contains a set of manifest directories containing the files

listed in each manifest. These directories are populated by a build

system outside the cluster. Each computer in the cluster runs a

periodic task that queries the Device Manager database to learn

what manifests should be present on its disk. If any manifests are

missing, they are fetched from one of the Deployment Service

replicas, picked at random. If any manifests are present on the

disk but are not on the list returned by the Device Manager, they

are deleted. The computer informs the Device Manager when its

1 We refer with slight abuse of terminology to a computer ―storing

a manifest,‖ meaning that the computer stores the files listed in

that manifest.

manifests are up to date, so the Device Manager contains both a

central record of what versions should be on each computer, and a

weakly consistent view of the versions that are actually present.

5.3 Deploying new code
In the steady state, each machine type in the cluster is associated

with a single active manifest, so every computer with the same

machine type is running the same set of application binaries, with

identical configurations. When a new version is ready for

deployment, the new manifest is stored to the Deployment Servers

and the Device Manager is instructed to roll it out on the specified

machine type. It immediately adds this manifest to the storage list

for each computer with the designated machine type, and kicks

each computer to tell it to fetch it. Computers that do not receive

this message for any reason will fetch the manifest later when

their scheduled synchronization task runs. When a high enough

proportion of computers have fetched the new manifest, the

Device Manager is ready to start instructing computers to make

the new version active.

Autopilot defines the concept of a ―scale unit‖ which is a set of up

to around 500 computers. In general the computers in a scale unit

encompass multiple machine types. The purpose of partitioning

the computers this way is to allow staged rollouts of a new code

version. Each machine type is configured with a maximum

number of scale units that Autopilot is allowed to concurrently

modify. If an application component uses 1000 computers, these

might be partitioned into ten 100-computer scale units, and the

computers with a given machine type might be spread evenly

across the scale units. Autopilot could then be configured to roll

out at most 3 scale units, or 30% of the computers with that

machine type, at a time.

When the Device Manager decides to roll forward the set of

computers in a scale unit with a particular machine type, it

updates its database to instruct the computers to run the new

manifest, then kicks them to synchronize their configuration. The

Device Manager monitors the computers and learns when each is

successfully running the new version. The mechanism to

determine this is described in Section 6. When a high enough

proportion has successfully rolled forward, the machine type

rollout for that scale unit is declared to be successful, allowing the

next scale unit‘s rollout to proceed. If a timeout is reached before

a sufficient proportion of computers has successfully rolled

forwards, the rollout is cancelled, and all computers (in all scale

units) with that machine type are rolled back to the old version,

one scale unit at a time.

Deployments are started with a single operator command and then

proceed fully automatically and unmonitored, often overnight if

many computers are involved. In the event of a rollback, an

operator can determine the cause at a later date and take

appropriate action before attempting the rollout again. Even

simple configuration parameter changes are handled using the

deployment machinery, and therefore a mis-configuration is

rejected by automatic rollback exactly as a buggy code version

would be. Likewise, new operating system images are deployed in

the same way.

6. AUTOMATIC REPAIR SERVICES
Autopilot supports a simple model for fault detection and

recovery. It was designed to be as minimal as possible while still

keeping a cluster operational. The unit of failure is defined to be a

computer or network switch rather than a process, and the only

available remedies are Reboot, ReImage, and Replace, described

in more detail in Section 6.2 below. This ensures that Autopilot

does not need to contain logic to attribute blame to a particular

process or component, or consider application-specific recovery

actions.

6.1 Watchdogs
Faults are detected using a set of watchdogs. A watchdog probes

one or more computers to test some attribute, and then reports to

the Device Manager. The watchdog reports OK, Warning, or

Error for the attribute on each computer, along with an arbitrary

descriptive reason string for the latter two. The set of watchdogs is

extensible; the definition of a watchdog is simply any piece of

code that understands how to contact the Device Manager using

the watchdog protocol. This is a simple plain-text protocol so it is

easy to write a watchdog in a scripting language.

The Device Manager can compute a transient error predicate for

any computer using the watchdog attributes: if any watchdog

reports Error, the computer is in error; if all watchdogs report

either OK or Warning, the computer is not in error. This predicate

is used to drive the state machine outlined in Section 6.2. The

Warning status is used to report unexpected but non-fatal

conditions. The audit history of warnings can be useful, for

example, during the postmortem analysis of an unexpected event,

but a warning does not automatically trigger any Autopilot action.

We could have built an alert system that would contact an

operator when it detected warnings. However, a fundamental goal

of Autopilot is to avoid burdening operations staff with the task of

monitoring and understanding alerts, or taking remedial actions.

We therefore don‘t want to encourage developers to use warnings

as a ―lifeline‖ to a human: rather, the system should be designed

to react to problems automatically. Applications sometimes do

need to generate alerts, but they are typically triggered by

information integrated from multiple computers or components

(see Section 7).

Some watchdogs are supplied by Autopilot and are run either on

every computer locally or on a set of computers called the

Watchdog Service. These standard watchdogs include periodic

checks that every computer is running the right Operating System

image and manifest; and queries to the computer‘s BIOS to detect

disk or memory error conditions. Other watchdogs are supplied by

the application. There is no need to limit the number of

watchdogs, so new watchdogs are often added to address specific

scenarios. For example, at one point it was discovered that some

computer configurations would spontaneously lose track of half of

their DRAM and consequently start paging until the symptom was

cured with a reboot. This was addressed with a custom watchdog

to periodically probe for the issue.

The Device Manager error predicate is the conjunction of all the

watchdogs for a computer, and once a computer is held to be in

error, it may be unavailable for a substantial period. It is therefore

important to minimize false positives in watchdogs. On the other

hand, when there is a fault that is detectable using a watchdog

there may be minutes of latency before the Device Manager

discovers it and takes action. Components that require low-latency

fault mitigation therefore typically implement custom ―soft-

failure‖ detectors and Section 8 explains this in more detail with

reference to a specific example component.

6.2 The Failure/Recovery State Machine
The lifecycle of a computer‘s repair state is shown in Figure 2. A

computer that is functioning normally is marked by the Device

Manager as being in the Healthy state. If any watchdog reports an

error for that computer it is placed in the Failure state and

assigned an appropriate ―recovery action‖ from the set

DoNothing, Reboot, ReImage, Replace. The choice of recovery

action depends on the recent repair history of the computer and

the error that is reported. A computer that has not had any errors

for multiple days or weeks and experiences a single application

fault might be assigned DoNothing in the hope that the fault was

transient and isolated. On the other hand a fatal disk error

reported by the BIOS will immediately cause a computer to be

marked for replacement. Repeated non-fatal errors on the same

computer in a short time window will cause the Device Manager

to escalate through reboots to re-imaging which involves

reformatting a computer‘s disks and reinstalling the operating

system. Eventually a computer will be marked for replacement.

Technicians sweep the data center every week or two to remove

dead computers and replace them with spares that are then

automatically discovered and provisioned as described in Section

5.1. The first version of Autopilot contains simple heuristics to

determine the order and timing of repair actions, and carries them

out independently without notifying the application. Some

applications benefit from advance warning of repairs, and this is

discussed in Section 9.

The Repair Service periodically asks the Device Manager for the

list of computers in the Failure state and uses their management

consoles to perform the required repair action, after which the

Device Manager is told to move the computer to the Probation

state. In this state a computer is expected to start off with some

watchdogs reporting errors. If the repair action was successful,

these errors should quickly disappear. If a computer remains

continuously error-free in the Probation state for long enough, it

is transitioned back to Healthy. If the computer remains in

Probation for too long it will be moved back to Failure triggering

another repair action.

When the Device Manager takes some action such as code

deployment (Section 5.3) that is likely to generate application-

specific watchdog errors, the set of affected machines is moved

from Healthy to Probation before the rollout is started. The

rollout is deemed to be successful on a computer if it undergoes

the normal transition back to Healthy. If a computer stays in

Probation for too long then the rollout has failed. This re-uses the

existing failure-detection machinery for rollout monitoring, while

ensuring that computers do not get assigned a ―black mark‖ in

their repair history due to watchdog errors resulting from planned

actions.

By centralizing all repair action decisions in the Device Manager

state machine Autopilot is able to throttle the number of machines

under repair at any time, and therefore protect against, for

example, a faulty watchdog causing all computers in a cluster to

be simultaneously rebooted.

7. MONITORING SERVICES
Autopilot components, and applications built to run on Autopilot,

record performance counters and logs in a standard location on

every computer. Performance counters are used to record the

instantaneous state of components, for example a time-weighted

average of the number of requests per second being processed by

a particular server. Performance counter histories are useful for

off-line trend analysis, but real-time values are also invaluable to

give operators a current view of the state of the system and help in

the diagnosis of any unexpected issues. Logs are mostly used to

record individual component actions that can be correlated later in

off-line processing.

The Collection Service forms a distributed collection and

aggregation tree for performance counters and logs. It can

generate a centralized view of the current state of the cluster‘s

performance counters with a latency of a few seconds. Individual

counters can be aggregated, for example across an entire machine

type, in order to keep the volume of low-latency data manageable.

The Collection Service also lazily collects detailed performance

counters and logs and writes them to a large-scale distributed,

replicated file store where they are available for off-line data-

mining.

Real-time performance-counter information is kept in a SQL

database so that sophisticated statistics can be computed for

visualization and diagnosis simply by issuing the appropriate

relational queries. Cockpit is a visualization tool that lets

operators monitor one or more Autopilot clusters using graphs

and reports generated from the performance counter databases. It

is easy to store default views, or construct custom queries to drill

down into a particular issue. Cockpit also serves as a gateway

allowing operators to fetch arbitrary log files from individual

computers. Together with the ability to monitor computers‘

performance counters, this provides an audited access mechanism

that eliminates most requirements for direct access to data center

computers. There is an automated Alert Service that sends emails

or pages to support staff based on application-defined relational

queries against the Cockpit database. These queries can capture

system-wide properties by aggregating data from many computers

and sub-components.

Failure

Healthy

Probation

an error is

reported

continuously
error-free for
long enough

in Probation too long without
moving to Healthy

a repair action is performed

a deployment

action is performed

Figure 2: A simplified diagram of the failure/recovery

state machine. The Device Manager records its estimate of

the state of each computer in the cluster as Healthy, Failure

or Probation. Transitions described in bold text occur as a

side effect of other Device Manager actions. Transitions

described in italics occur when a timer expires. The state

machine is described in Section 6.2.

8. CASE STUDY: INDEX SERVING
Autopilot provides a set of basic services that are sufficient to

keep the underlying infrastructure of a cluster in good health. We

chose to keep Autopilot simple by using lazy repair actions and a

minimalist failure/recovery model. Some application components

are able to use the Autopilot failure model directly, however they

must be able to tolerate latencies of seconds or minutes between

the time that a computer fails and the time that the failure is listed

in the Device Manager database.

Applications that need high availability for low-latency customer-

facing services may therefore need to layer custom fault tolerance

on top of the basic Autopilot components. This section explains

some of the ways in which the clusters that return query results to

users as part of the Windows Live Search application interact with

Autopilot and retain high availability.

Although the Device Manager is extremely reliable, the search

application developers chose to keep a private weakly consistent

snapshot of crucial information so that query results continue to

flow for as long as possible if Autopilot fails. A web-index

serving cluster includes machine types such as front-end web

servers and back-end partitions of the web index. The ground

truth listing the computers in each of these machine types is stored

in the Device Manager, however the index serving components

store a weakly consistent cache of this information (including the

IP addresses of each peer) on every computer, so that they can

start up and contact each other autonomously, for example after a

data center power failure, even if the Device Manager and Active

Directory are disabled. Likewise each computer caches a local

copy of the list of computers that the Device Manager considers to

be failed to avoid wasting time trying to contact those computers;

however the application maintains its own internal ―soft-failure‖

list to route around computers that are misbehaving but may still

be considered healthy by Autopilot.

There is a constant stream of queries to the Windows Live Search

service, and load balancers in the web servers ensure that every

computer in the back end is serving some fraction of that query

load at any given time. These load balancers can therefore detect

very quickly if a computer has stopped responding or is slower

than its peers. There is substantial redundancy in the web index,

so if a load balancer is suspicious about a computer it can send

duplicate queries to redundant partitions: thus the user continues

to get responses with low latency, but the suspicious computer

continues to receive traffic allowing the load balancers to learn if

a transient fault goes away without the need for remedial action.

Each web server operates its own load balancer so there are

multiple independent estimators of computer failures. The index

serving pipeline operates a monitoring service that integrates

information from all of the web servers. If there is consensus

agreement that a computer is behaving poorly, the monitor acts as

a watchdog to tell Autopilot about the error. Due to the amount of

information available to it, this monitor is able to report failures

with very few false positives.

This design for Windows Live Search has been successful in

allowing the application to ignore all details of deployment, repair

actions, etc. At the same time the application retains fine control

over the definition of real-time computer failure conditions, and

operates reliably in the face of temporary outages of even core

Autopilot components.

9. LESSONS LEARNED FROM VERSION 1
Autopilot was originally deployed in concert with the Windows

Live Search backend. The design in this paper represents a

snapshot of the design shortly after that deployment, but the

system has been under continuous development since then. We

first note some of the lessons from the first version that have

guided this development:

 There were many low-priority issues with the first version that

have now been fixed; for example it was initially somewhat

complex to set up and bootstrap a new Autopilot cluster and

this is now much simpler. Likewise there is support for more

diverse computer and networking configurations.

 Some initial Device Manager features were too minimal for

applications other than Search. For example, applications that

need to store highly reliable replicated data need more control

over the throttling of ReImage repair actions. Such

applications may need the chance to try to copy surviving data

from non-faulty disks before they are reformatted in order to

retain a good balance between the number of replicas and the

mean time to data loss. There may be other examples where

the interaction between components requires a more complex

mechanism to specify Device Manager logic. For example, an

application might request that a particular scale unit should

not be taken out of service for code deployment if the number

of failures in another component is above some threshold.

 Autopilot has so far been used to manage a relatively small

number of complex, highly-engineered, vertical applications.

We anticipate supporting a growing number of more

lightweight applications that, at least in their early stages of

development, require only a small number of computers and

may be prototyped very rapidly. Consequently we have been

increasing the support services offered by Autopilot and we

may, for example, offer some standard solution for low-

latency failure detection so that applications do not all have to

implement custom designs like that set out in Section 8.

 We have also extended support for running applications or

replicated services that are geographically distributed across

data centers, and so may require coordination between, for

example, deployment processes. Future versions of Autopilot

may take over the management of name services from Active

Directory in order to reduce the number of custom

deployment and management tasks in an Autopilot cluster,

and this will also require coordination between clusters to

present a consistent view of the name space.

Overall we have found our assumptions to be sufficiently close to

reality that no substantial redesign has so far been necessary.

As mentioned in Section 4, we protect strongly-replicated data

using replicated state machines employing the Paxos protocol to

achieve consensus. This design assumes that failures that cause

data loss are independent, but transient non-destructive failures

(such as power outages) may be correlated. Both of these

assumptions have held up; in particular, any design that did not

allow recovery after all computers are shut down would be

insufficient.

We have not yet confronted any major faults inside the data center

that have defeated our fault-tolerance mechanisms, but that would

have been contained by a Byzantine fault-tolerant algorithm.

Avoiding the additional complexity of implementing Byzantine

fault-tolerance therefore seems justified. Our staged rollout

procedure does introduce new code (along with its new potential

bugs) on a small fraction of a machine type‘s computers at first.

This model fits Byzantine fault-tolerant assumptions very well,

and some applications may in future adopt more complex fault

tolerance strategies if the risk of state corruption justifies it.

Autopilot contains a number of hand-set thresholds defining the

policy for deployments, probation state timeouts, etc. We are

currently recording large amounts of data logging the actions that

Autopilot takes, along with performance counters capturing the

state of client applications when those actions are taken. We are

experimenting with machine learning algorithms to analyze these

data in order to understand how to improve the policy settings,

with the ultimate goal of automating many of the current manual

policies.

As with all large-scale deployments, we have encountered failures

of every type that we expected, and some we didn‘t.

 It is vital to keep checksums of all crucial files (for example

machine-type manifests) since they will become corrupted.

Checksums also allow the detection of hand-edited

configurations that were temporarily changed, for example as

part of a debugging investigation. Without such automatic

detection it is very hard to prevent gradual configuration drift

in a large system.

 TCP/IP checksums are weak, and messages will be silently

corrupted unless they are protected by additional application-

level checksums.

 Networking hardware will malfunction and start flipping large

numbers of bits; this both causes a storm of retries, and makes

it inevitable that some errors will remain undetected by TCP.

 Computers will spontaneously start running very slowly, but

keep making progress, so systems need to tolerate and detect

this as well as fail-stop errors.

 Throttling and load shedding are crucial in all aspects of an

automated system. Failure detectors must be able to

distinguish between the symptoms of failure and overloading,

otherwise overloaded computers may be marked as failed and

removed from service, amplifying the problem and triggering

a cascade of failures that disables the entire application.

Autopilot has been continuously operating its oldest clusters since

the pre-release Windows Live Search engine was deployed in

2004. Over that time we have rewritten many components and

substituted them in place, without ever bringing down a major

production cluster for planned maintenance. Autopilot supports

all forthcoming large-scale deployments inside Microsoft, and

some legacy services have already been ported to run on Autopilot

clusters. Autopilot supports a vastly lower cost of management

than legacy Microsoft services, with a very high level of

reliability. Up to this point, there has been no major outage of a

customer-facing service that can be directly attributed to an

Autopilot failure.

10. ACKNOWLEDGMENTS
As mentioned in the Introduction, the design and implementation

of Autopilot was led by the Windows Live Search core team.

Many members of that team have shared comments and advice to

help make this an accurate and representative depiction of the

system, however any remaining errors are the responsibility of the

author. Autopilot‘s success has only been possible due to the

collaboration and hard work of many product teams spanning

developers, testers, program management, and of course data

center operational staff at all levels.

I would also like to thank Darren Shakib, Kevin Kaufmann,

Martín Abadi, Mike Schroeder, Andrew Birrell and John

MacCormick for many helpful comments on improving the

content and presentation of the paper.

11. REFERENCES
[1] Ajmani, S., Liskov, B. and Shrira, L. Modular Software

Upgrades for Distributed Systems. 20th European

Conference on Object-Oriented Programming, July 2006,

452–476.

[2] Barroso, L.A., Dean, J. and Holzle, U. Web Search for a

Planet: The Google Cluster Architecture. IEEE Micro, 2003.

[3] Brown, A. and D. A. Patterson. Embracing Failure: A Case

for Recovery-Oriented Computing (ROC). High

Performance Transaction Processing Symposium, October

2001.

[4] Candea, G. and Fox, A. Crash-Only Software. 9th Workshop

on Hot Topics in Operating Systems, May 2003, 67–72.

[5] Gentzsch, W., Iwano, K., Johnston-Watt, D. Minhas, M.A.

and Yousif, M. Self-adaptable autonomic computing

systems: an industry view. 16th International Workshop on

Database and Expert Systems Applications, August 2005,

201–205.

[6] Lamport, L. The Part-Time Parliament. ACM Transactions

on Computer Systems 16, 2 (May 1998),133–169.

[7] Microsoft Active Directory for Windows Server 2003.

http://www.microsoft.com/windowsserver2003/technologies/

directory/activedirectory/default.mspx

http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx

