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ABSTRACT 

Microsoft is rapidly increasing the number of large-scale web 

services that it operates. Services such as Windows Live Search 

and Windows Live Mail operate from data centers that contain 

tens or hundreds of thousands of computers, and it is essential that 

these data centers function reliably with minimal human 

intervention. This paper describes the first version of Autopilot, 

the automatic data center management infrastructure developed 

within Microsoft over the last few years. Autopilot is responsible 

for automating software provisioning and deployment; system 

monitoring; and carrying out repair actions to deal with faulty 

software and hardware. A key assumption underlying Autopilot is 

that the services built on it must be designed to be manageable. 

We also therefore outline the best practices adopted by 

applications that run on Autopilot. 

Categories and Subject Descriptors 

C.2.4 [Computer-communication networks]: Distributed systens 

– distributed applications, network operating systems 

General Terms 

Management, Design 

Keywords 

Automatic management, Cluster computing 

1. INTRODUCTION 
Microsoft is rapidly expanding the scope of its web-scale online 

services. Windows Live Search was re-launched using an internal 

back-end in January 2005, and Windows Live Mail (formerly 

Hotmail) has seen a large growth in storage capacity over the last 

few years. Several more web-scale services are currently in 

development, and the total number of server computers managed 

by Microsoft has increased very quickly over the last few years, 

and will continue to grow. 

The sudden growth of Microsoft‘s data center capacity at the same 

time that several new service back-ends are being developed has 

given us an opportunity to design a new in-house infrastructure 

for automatic data center management. This infrastructure is 

known as Autopilot. Its design was primarily motivated by the 

need to keep the total cost of a data center, including operational 

and capital expenses, as low as possible. This is partly achieved 

by using more intelligent software to replace much of the 

repetitive work previously handled by operations staff. We aim to 

maintain as few people as possible on 24-hour call: our most 

efficient services support many thousands of computers per 

member of operations staff, and run on an 8x5 rather than 24x7 

support schedule. 

Increased reliability is an equally important benefit of automation. 

Many data center failures are caused by human error, often 

resulting from an attempt to fix an earlier problem. As more 

failure management is moved to automated scripts, there is less 

variability in the response to faults, and thus we can hope to make 

the entire system more reliable and maintainable. 

The first version of Autopilot described here concentrates on the 

basic services needed to keep a data center operational: 

provisioning and deployment; monitoring; and the hardware 

lifecycle including repair and replacement. Autopilot supplies 

mechanisms to automate all of these services, however policy — 

for example, determining which computers should run which 

software, or precisely defining and detecting failures that need to 

be repaired — is mostly left to individual applications. Converting 

legacy applications to work with new automatic management 

software is a challenging problem. Autopilot has the luxury of 

starting from a fresh application base, supporting mainly systems 

that were built to conform to Autopilot‘s design principles. 

Most of the technology used in Autopilot components is similar to 

designs that have appeared in previously reported work. Our 

overall approach to fault tolerance follows the Recovery Oriented 

Computing model outlined in [3], and we adopt the crash-only 

software methodology proposed in [4]. Our software deployment 

strategy fits the framework advanced in [1]. There has been much 

recent interest in ―autonomic‖ computing, and a survey of 

commercial work in this area is given in [5], but the goals of that 

community are more ambitious than those of Autopilot. 

Autonomic computing looks forward to the day when most 

configuration policy will be controlled automatically. As noted 

above, this paper describes mostly mechanism to support 

manually-determined policies. The factors that underlie our desire 

to implement fault-tolerance in software on top of a large number 

of unreliable commodity computers are similar to those described 

in [2]. Many of the design practices we follow are standard 

software-engineering methodology. Nevertheless, it is still a 

challenge to combine all of these ideas into a fully automatic 

system that can manage tens of thousands of computers 24 hours a 

day for years at a time without any planned downtime for the 

system as a whole. 

This paper gives an overview of Autopilot‘s structure, but it does 

not attempt to fill in the details: it would be impractical to try to 

supply enough information here to allow even a skilled 

practitioner to re-implement the whole system. Instead we have 

tried to abstract and explain some of the high-level design 

principles we adopt that let us write and maintain complex 

software deployed in large-scale modern data centers. Section 2 

outlines our design philosophy. Section 3 describes the typical 

hardware configuration of our data centers. Section 4 gives an 

overview of Autopilot‘s component structure, and Sections 5 to 7 

examine each component in more detail. Section 8 provides a 

brief case study showing how one application interacts with 

Autopilot, and we discuss some lessons we learned along the way 

in Section 9. 



 

  

The named author participated in the design of several Autopilot 

components, however this paper is primarily a report on the work 

of others. The original conception, the vast bulk of the design, and 

all the implementation of Autopilot were undertaken by product 

groups at Microsoft, led by the Windows Live Search core team. 

2. DESIGN PRINCIPLES 
Traditionally, reliable systems have been built on top of fault-

tolerant hardware. The economics of the contemporary computing 

industry dictate, however, that the cheapest way to build a very 

large computing infrastructure is to amass a huge collection of 

commodity computers. In exchange for lower capital expenditure 

compared with the traditional approach, this results in hardware 

that is much more prone to failures. This as an opportunity to 

move more fault-tolerance into software, but we must employ 

consistent design principles in order to be confident about the 

reliability of the applications we deploy. 

The two most important principles underlying the Autopilot 

design are fault tolerance and simplicity: 

 Since any component can fail at any time, the system must be 

reliable enough to continue automatically with some 

proportion of its computers powered down or misbehaving. 

All vital state must be replicated, and any necessary fail-over 

must be completely automatic. We aim to minimize critical 

dependencies between components so that a temporary fault 

in one service does not become a single point of failure and 

disable an entire cluster. 

The basic failure model we have assumed is non-Byzantine. 

This is a consequence of the controlled environment within 

our data centers. Data corruption problems can generally be 

managed using checksums, so Byzantine faults tend to arise 

when some replicas violate a protocol contract. Although this 

type of failure does occur, it is more likely to be caused by 

bugs than by the malicious hijacking of a small number of 

processes. Consequently, problems are typically not confined 

to a minority of replicas, and so Byzantine fault-tolerant 

algorithms are of limited usefulness. We briefly revisit this 

issue in Section 9. 

 We believe that simplicity is as important as fault-tolerance 

when building a large-scale reliable, maintainable system. 

Often this means applying conservative design principles: in 

many cases we rejected a complex solution that was more 

efficient, or more elegant in some way, in favor of a simpler 

design that was good enough. This requires constant 

discipline to avoid unnecessary optimization, and unnecessary 

generality. ―Simplicity‖ must always be considered in the 

context of the entire system, since a solution that looks 

simpler to a component developer may cause nightmares for 

integration, testing, or operational staff. 

Simplicity is also manifested in more basic ways. Where 

components are configurable, the parameters are stored in 

human-readable plain text files that are under the management 

of the same version control system as source code and 

documentation. (Autopilot components never use the 

Windows Registry.) If a change in configuration is made, this 

is done by a deployment procedure (see Section 5.2) with an 

audit trail. We discourage the use of any interactive control 

channel to a process that would allow configuration changes 

to be made without generating an audit trail. 

Where correctness is at stake we attempt not to cut corners even 

when it introduces extra complexity. Of course every design is 

only as ―correct‖ as the assumptions on which it is based, 

including the assumption that there are no bugs in the code. No 

algorithm can provide hard guarantees of correctness in a practical 

system built on physical hardware, so it is impossible to do more 

than provide ―best effort‖ service. We can however distinguish 

between designs that make their assumptions explicit and those 

that make implicit assumptions, for example that failures will not 

happen in ―pathological‖ combinations. In a large system one 

must expect all combinations of failures, so we aim to use designs 

whose assumptions we understand, but that are simple enough 

that we can hope to find all crucial bugs through careful review 

and testing. At the same time we accept that no implementation is 

foolproof, and the best we can achieve is to optimize for a 

tolerable level of risk. 

Our fault tolerance strategy requires that components must be 

designed so any process can be killed unexpectedly without 

destabilizing the system. Most of our components therefore treat 

forced termination as the only exit mechanism and can 

consequently omit clean shutdown code. Because processes must 

be able to tolerate crashes, we are able to use assert statements 

very liberally and, along with the resulting debugging benefits, 

this can also help to simplify a design since there is no need to try 

to recover from a damaged invariant. This is a special case of a 

general principle of avoiding seldom-used failure paths in our 

programs. 

As explained in the Introduction, it was not a design requirement 

that we provide all of the benefits of Autopilot to legacy code. 

Legacy applications often assume reliable hardware, but by 

designing new applications with automation in mind we can move 

much of this reliance into software and thus reduce hardware 

complexity and cost. Partly, this means advocating to application 

designers the same principles of fault tolerance and simplicity that 

are adopted in the Autopilot components. Applications must 

expect their processes to be killed without warning, and where 

possible, customer-facing services should continue, perhaps with 

degraded operation, in the face of even large numbers (e.g. 50%) 

of failed computers. Applications must use Autopilot interfaces 

for reporting errors in order to benefit from automatic monitoring 

and failure management. Applications must also be easy for 

Autopilot to install and configure: in practice this means that an 

application configuration must be entirely specified by files in the 

local file system of the computer where the application is running. 

3. HARDWARE CONFIGURATION 
In common with other contemporary data center operators, we 

buy and install computers in quantities of at least a rack. Each 

computer conforms to one of a small set of standard specifications 

including, for example, an ―application‖ configuration with 

several processor cores and a few direct-attached hard drives, and 

a ―storage‖ configuration with more disks per processor. A typical 

―application‖ rack might contain 20 identical multi-core 

computers, each with 4 direct-attached hard drives. Also in the 

rack is a simple switch allowing the computers to communicate 

locally with other computers in the rack, and via a switch 

hierarchy with the rest of the data center. Finally each computer 

has a management interface, either built in to the server design or 

accessed via a rack-mounted serial concentrator. This ensures that, 

at a minimum, it is possible for a remote software component to 



 

  

power each computer on and off and install new Operating 

System images. 

The set of computers managed by a single instance of Autopilot is 

called a cluster. At this point, the largest deployed Autopilot 

clusters contain up to tens of thousands of computers, though 

many are much smaller. There may be more than one cluster in a 

data center, but we aim as far as possible to eliminate inter-

dependencies so that a failure in one Autopilot cluster is unlikely 

to affect other services. 

4. AUTOPILOT SYSTEM OVERVIEW 
Autopilot is divided into several components, illustrated in Figure 

1. This simplifies the overall design, and makes it easier to modify 

parts of the Autopilot independent of the rest. However, because 

the system is distributed, this organization has the potential to 

introduce inconsistencies between the components. 

Where information needs to be shared between components in a 

distributed system, there is often a choice between designs that 

allow weak consistency and those that require strong consistency. 

Weak consistency can improve availability, since one component 

may be able to operate for a while from cached data when another 

is unavailable. However, strong consistency often allows simpler 

designs. In the absence of strong consistency, faults such as a 

transient partitioning of the network may allow components to 

perform conflicting actions that must be resolved when the 

partitioning is repaired. This leads to a need for conflict detection 

and recovery logic, introducing extra complexity and adding code 

paths that are not used except in failure cases. 

The shared state held in Autopilot is deliberately kept fairly small, 

and the system is designed to tolerate latencies of tens of seconds 

or more for most actions. These choices allow us to make a simple 

tradeoff between weak and strong consistency, as follows. All of 

the information about the ―ground truth‖ state that the system 

should be in, along with the logic to update this ground truth, is 

held in a single strongly-consistent state machine called the 

Device Manager that is typically distributed over 5–10 computers. 

It is built on a well tested replicated state machine library with a 

strict abstraction boundary so that bugs in the replication 

mechanism are decoupled from bugs in the state machine 

implementation. The library is lightweight (around 5,000 lines of 

C++ in total) and uses the Paxos algorithm [6] to achieve 

consensus between replicas, batching updates in order to get a 

reasonable balance between latency and throughput. 

The Device Manager stores the state that the system should be in, 

however it does not itself take any actions to keep the cluster 

synchronized with this ground truth. Instead Autopilot includes a 

number of ―satellite‖ services. These satellites lazily perform 

actions to bring themselves or their clients up to date when they 

discover that the Device Manager state requires it. Similarly, if a 

satellite discovers a fault or inconsistency in the cluster, it will not 

attempt to rectify it but instead will report the problem to the 

Device Manager. This allows Autopilot to integrate information 

across the cluster and apply system-wide throttling or consistency 

checks before deciding to take action. At that point, the Device 

Manager updates its state, which will eventually result in a 

satellite repair service noticing the update and taking appropriate 

action. 

The satellite services are themselves replicated, and may contain 

private state. The Autopilot design partitions system state between 

satellites and the Device Manager in such a way that the satellites 

can keep their state weakly consistent without compromising 

correctness. 

Satellite services receive information from the Device Manager 

using a ―pull‖ model. They regularly send lightweight messages to 

the Device Manager that report their current status, and in 

response are sent the relevant parts of the current Device Manager 

ground truth. The use of regular ―heartbeat‖ messages makes the 
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Figure 1: A schematic of the Autopilot system and 

applications. Arrows show the flow of communication. 

The Device Manager (Section 4) is the central system-wide 

authority for configuration and coordination. The 

Provisioning Service and Deployment Service (Section 5) 

ensure that each computer is running the correct operating 

system image and set of application processes. The 

Watchdog Service and Repair Service (Section 6) 

cooperate with the application and the Device Manager to 

detect and recover from software and hardware failures. 

The Collection Service and Cockpit (Section 7) passively 

gather information about the running components and 

make it available in real-time for monitoring the health of 

the service, as well as recording statistics for off-line 

analysis. (These monitoring components are ―Autopiloted‖ 

like any other application, and therefore communicate with 

the Device Manager and Watchdog Service which provide 

fault recovery, deployment assistance, etc., but this 

communication is not shown in the figure for simplicity.) 



 

  

design very robust to transient failures, since individual messages 

can be lost without affecting eventual correctness. Sometimes a 

state transition in the Device Manager will cause it to ―kick‖ 

remote services to request that they send a ―pull‖ query 

immediately. This is simply an optimization that lets us ensure 

that most satellite computers quickly learn about any required 

actions, but any computers that do not receive the kick will still 

learn of the state change through a later heartbeat. An alternative 

―push‖ model would require the Device Manager to keep state for 

every message recording which clients had so far received it: we 

decided that the extra network traffic and latency incurred by the 

―pull‖ design was an acceptable tradeoff in exchange for a simpler 

Device Manager. 

5. LOW-LEVEL SERVICES 
A small number of operating system images are in use at any time 

in a cluster. We use only stable commercial releases of Windows 

Server operating systems.  Each image also contains some basic 

Autopilot configuration files, and some Autopilot-specific 

Windows services, pre-installed and enabled on boot. The 

configuration files contain, for example, the DNS names of 

computers running core Autopilot components. The Windows 

services are able to communicate with centralized Autopilot 

components to ensure that the correct application processes are 

installed and running on the computer. Network configuration and 

name services are currently managed independently of Autopilot 

using a standard replicated installation of Active Directory [7]. 

Every computer runs a local service, supplied by Autopilot, that 

ensures the correct files are present on its local disk. This filesync 

service is used extensively by Autopilot and applications to 

transfer data between computers. The service acts both as a client 

requesting files from remote machines, and as a server handling 

such client requests. By using a dedicated service rather than 

relying on an operating system component (such as the standard 

Windows remote file access features) we gain better control over 

logging of file transfers, and the ability to throttle transfers so a 

computer or switch does not become unexpectedly overloaded. 

A second local service on every computer, called the application 

manager, makes sure that the correct processes are running. Each 

application process is distributed as a standalone directory 

containing all binaries, shared libraries and configuration files 

necessary to for the process, along with a standard ‗start.bat‘ 

script that can be invoked to start it. There is no clean shutdown 

code so a process is stopped simply by instructing Windows to 

kill it and its children. The application manager reads a 

configuration script and ensures that the designated binaries are 

running. A process can be configured to run continuously (so it is 

restarted if it exits for any reason) or periodically, e.g. once an 

hour. 

5.1 Operating System Provisioning 
The Provisioning Service includes basic services such as DHCP 

and network boot. It also contains a scanner that constantly probes 

the network looking for new computers that have been plugged in. 

On finding one, it consults the Device Manager to learn what 

operating system image it should be running, then uses the 

computer‘s management interface to install and boot the image, 

and run burn-in tests. If these steps succeed, the Provisioning 

Service informs the Device Manager. The newly provisioned 

computer independently contacts the Device Manager to learn 

what application binaries to fetch and run, as described in the 

following sections. The computer‘s name is determined by its 

position in the network hierarchy, which in turn is determined by 

the rack (and slot in that rack) where it is plugged in. It is up to 

the operator to ensure that the correct hardware configuration is 

installed in each rack slot. 

The Provisioning Service is configured to use several computers 

for redundancy. These cooperate to elect a leader that carries out 

the appropriate actions. The Provisioning Service is stateless, and 

any necessary information is retrieved from the Device Manager 

when the leader starts up. Weak consistency of the deployment 

state during fail-over may cause some actions to be attempted 

more than once, but this can be tolerated since any resulting 

problems will eventually be detected and corrected by the normal 

activity of the repair services. 

5.2 Application deployment 
The application defines a set of machine types that are present in 

the cluster. Each type corresponds to a particular role that the 

computer might take on: for example in Windows Live Search 

these include ―web crawler,‖ ―front-end web server,‖ etc. The 

Device Manager database stores the machine type of every 

computer in the cluster. This mapping from computer to machine 

type is currently manually and statically configured. Autopilot 

does not perform migration or load balancing, though of course 

applications frequently implement their own load balancers to 

automatically distribute work among the computers of a given 

machine type. 

The only difference between machine types from the perspective 

of deployment is the set of configuration files and application 

binaries that should be present on the computer (in particular, a 

machine type is not necessarily tied to a particular hardware 

configuration). The application manager is responsible for reading 

the configuration and making sure the appropriate processes are 

running. Each such set of files is described using a configuration 

manifest, stored in the Device Manager database. A computer can 

store multiple manifests at once1, with one ―active,‖ and the 

application manager will run the processes listed in the active 

manifest. This allows new application versions to be pre-loaded 

onto computers before they are scheduled to be enabled; also 

recent previous versions are kept for a while to allow rapid 

rollback to a known good state in the event of problems. The list 

of manifests that should be stored on each computer is recorded in 

the Device Manager along with the name of the computer‘s active 

manifest. 

The Deployment Service is a set of weakly consistent replicas each 

of which contains a set of manifest directories containing the files 

listed in each manifest. These directories are populated by a build 

system outside the cluster. Each computer in the cluster runs a 

periodic task that queries the Device Manager database to learn 

what manifests should be present on its disk. If any manifests are 

missing, they are fetched from one of the Deployment Service 

replicas, picked at random. If any manifests are present on the 

disk but are not on the list returned by the Device Manager, they 

are deleted. The computer informs the Device Manager when its 

                                                                 

1 We refer with slight abuse of terminology to a computer ―storing 

a manifest,‖ meaning that the computer stores the files listed in 

that manifest.  



 

  

manifests are up to date, so the Device Manager contains both a 

central record of what versions should be on each computer, and a 

weakly consistent view of the versions that are actually present. 

5.3 Deploying new code 
In the steady state, each machine type in the cluster is associated 

with a single active manifest, so every computer with the same 

machine type is running the same set of application binaries, with 

identical configurations. When a new version is ready for 

deployment, the new manifest is stored to the Deployment Servers 

and the Device Manager is instructed to roll it out on the specified 

machine type. It immediately adds this manifest to the storage list 

for each computer with the designated machine type, and kicks 

each computer to tell it to fetch it. Computers that do not receive 

this message for any reason will fetch the manifest later when 

their scheduled synchronization task runs. When a high enough 

proportion of computers have fetched the new manifest, the 

Device Manager is ready to start instructing computers to make 

the new version active. 

Autopilot defines the concept of a ―scale unit‖ which is a set of up 

to around 500 computers. In general the computers in a scale unit 

encompass multiple machine types. The purpose of partitioning 

the computers this way is to allow staged rollouts of a new code 

version. Each machine type is configured with a maximum 

number of scale units that Autopilot is allowed to concurrently 

modify. If an application component uses 1000 computers, these 

might be partitioned into ten 100-computer scale units, and the 

computers with a given machine type might be spread evenly 

across the scale units. Autopilot could then be configured to roll 

out at most 3 scale units, or 30% of the computers with that 

machine type, at a time. 

When the Device Manager decides to roll forward the set of 

computers in a scale unit with a particular machine type, it 

updates its database to instruct the computers to run the new 

manifest, then kicks them to synchronize their configuration. The 

Device Manager monitors the computers and learns when each is 

successfully running the new version. The mechanism to 

determine this is described in Section 6. When a high enough 

proportion has successfully rolled forward, the machine type 

rollout for that scale unit is declared to be successful, allowing the 

next scale unit‘s rollout to proceed. If a timeout is reached before 

a sufficient proportion of computers has successfully rolled 

forwards, the rollout is cancelled, and all computers (in all scale 

units) with that machine type are rolled back to the old version, 

one scale unit at a time. 

Deployments are started with a single operator command and then 

proceed fully automatically and unmonitored, often overnight if 

many computers are involved. In the event of a rollback, an 

operator can determine the cause at a later date and take 

appropriate action before attempting the rollout again. Even 

simple configuration parameter changes are handled using the 

deployment machinery, and therefore a mis-configuration is 

rejected by automatic rollback exactly as a buggy code version 

would be. Likewise, new operating system images are deployed in 

the same way. 

6. AUTOMATIC REPAIR SERVICES 
Autopilot supports a simple model for fault detection and 

recovery. It was designed to be as minimal as possible while still 

keeping a cluster operational. The unit of failure is defined to be a 

computer or network switch rather than a process, and the only 

available remedies are Reboot, ReImage, and Replace, described 

in more detail in Section 6.2 below. This ensures that Autopilot 

does not need to contain logic to attribute blame to a particular 

process or component, or consider application-specific recovery 

actions. 

6.1 Watchdogs 
Faults are detected using a set of watchdogs. A watchdog probes 

one or more computers to test some attribute, and then reports to 

the Device Manager. The watchdog reports OK, Warning, or 

Error for the attribute on each computer, along with an arbitrary 

descriptive reason string for the latter two. The set of watchdogs is 

extensible; the definition of a watchdog is simply any piece of 

code that understands how to contact the Device Manager using 

the watchdog protocol. This is a simple plain-text protocol so it is 

easy to write a watchdog in a scripting language. 

The Device Manager can compute a transient error predicate for 

any computer using the watchdog attributes: if any watchdog 

reports Error, the computer is in error; if all watchdogs report 

either OK or Warning, the computer is not in error. This predicate 

is used to drive the state machine outlined in Section 6.2. The 

Warning status is used to report unexpected but non-fatal 

conditions. The audit history of warnings can be useful, for 

example, during the postmortem analysis of an unexpected event, 

but a warning does not automatically trigger any Autopilot action. 

We could have built an alert system that would contact an 

operator when it detected warnings. However, a fundamental goal 

of Autopilot is to avoid burdening operations staff with the task of 

monitoring and understanding alerts, or taking remedial actions. 

We therefore don‘t want to encourage developers to use warnings 

as a ―lifeline‖ to a human: rather, the system should be designed 

to react to problems automatically. Applications sometimes do 

need to generate alerts, but they are typically triggered by 

information integrated from multiple computers or components 

(see Section 7). 

Some watchdogs are supplied by Autopilot and are run either on 

every computer locally or on a set of computers called the 

Watchdog Service. These standard watchdogs include periodic 

checks that every computer is running the right Operating System 

image and manifest; and queries to the computer‘s BIOS to detect 

disk or memory error conditions. Other watchdogs are supplied by 

the application. There is no need to limit the number of 

watchdogs, so new watchdogs are often added to address specific 

scenarios. For example, at one point it was discovered that some 

computer configurations would spontaneously lose track of half of 

their DRAM and consequently start paging until the symptom was 

cured with a reboot. This was addressed with a custom watchdog 

to periodically probe for the issue. 

The Device Manager error predicate is the conjunction of all the 

watchdogs for a computer, and once a computer is held to be in 

error, it may be unavailable for a substantial period. It is therefore 

important to minimize false positives in watchdogs. On the other 

hand, when there is a fault that is detectable using a watchdog 

there may be minutes of latency before the Device Manager 

discovers it and takes action. Components that require low-latency 

fault mitigation therefore typically implement custom ―soft-

failure‖ detectors and Section 8 explains this in more detail with 

reference to a specific example component. 



 

  

6.2 The Failure/Recovery State Machine 
The lifecycle of a computer‘s repair state is shown in Figure 2. A 

computer that is functioning normally is marked by the Device 

Manager as being in the Healthy state. If any watchdog reports an 

error for that computer it is placed in the Failure state and 

assigned an appropriate ―recovery action‖ from the set 

DoNothing, Reboot, ReImage, Replace. The choice of recovery 

action depends on the recent repair history of the computer and 

the error that is reported. A computer that has not had any errors 

for multiple days or weeks and experiences a single application 

fault might be assigned DoNothing in the hope that the fault was 

transient and isolated. On the other hand a fatal disk error 

reported by the BIOS will immediately cause a computer to be 

marked for replacement. Repeated non-fatal errors on the same 

computer in a short time window will cause the Device Manager 

to escalate through reboots to re-imaging which involves 

reformatting a computer‘s disks and reinstalling the operating 

system. Eventually a computer will be marked for replacement. 

Technicians sweep the data center every week or two to remove 

dead computers and replace them with spares that are then 

automatically discovered and provisioned as described in Section 

5.1. The first version of Autopilot contains simple heuristics to 

determine the order and timing of repair actions, and carries them 

out independently without notifying the application. Some 

applications benefit from advance warning of repairs, and this is 

discussed in Section 9. 

The Repair Service periodically asks the Device Manager for the 

list of computers in the Failure state and uses their management 

consoles to perform the required repair action, after which the 

Device Manager is told to move the computer to the Probation 

state. In this state a computer is expected to start off with some 

watchdogs reporting errors. If the repair action was successful, 

these errors should quickly disappear. If a computer remains 

continuously error-free in the Probation state for long enough, it 

is transitioned back to Healthy. If the computer remains in 

Probation for too long it will be moved back to Failure triggering 

another repair action. 

When the Device Manager takes some action such as code 

deployment (Section 5.3) that is likely to generate application-

specific watchdog errors, the set of affected machines is moved 

from Healthy to Probation before the rollout is started. The 

rollout is deemed to be successful on a computer if it undergoes 

the normal transition back to Healthy. If a computer stays in 

Probation for too long then the rollout has failed. This re-uses the 

existing failure-detection machinery for rollout monitoring, while 

ensuring that computers do not get assigned a ―black mark‖ in 

their repair history due to watchdog errors resulting from planned 

actions. 

By centralizing all repair action decisions in the Device Manager 

state machine Autopilot is able to throttle the number of machines 

under repair at any time, and therefore protect against, for 

example, a faulty watchdog causing all computers in a cluster to 

be simultaneously rebooted. 

7. MONITORING SERVICES 
Autopilot components, and applications built to run on Autopilot, 

record performance counters and logs in a standard location on 

every computer. Performance counters are used to record the 

instantaneous state of components, for example a time-weighted 

average of the number of requests per second being processed by 

a particular server. Performance counter histories are useful for 

off-line trend analysis, but real-time values are also invaluable to 

give operators a current view of the state of the system and help in 

the diagnosis of any unexpected issues. Logs are mostly used to 

record individual component actions that can be correlated later in 

off-line processing. 

The Collection Service forms a distributed collection and 

aggregation tree for performance counters and logs. It can 

generate a centralized view of the current state of the cluster‘s 

performance counters with a latency of a few seconds. Individual 

counters can be aggregated, for example across an entire machine 

type, in order to keep the volume of low-latency data manageable. 

The Collection Service also lazily collects detailed performance 

counters and logs and writes them to a large-scale distributed, 

replicated file store where they are available for off-line data-

mining. 

Real-time performance-counter information is kept in a SQL 

database so that sophisticated statistics can be computed for 

visualization and diagnosis simply by issuing the appropriate 

relational queries. Cockpit is a visualization tool that lets 

operators monitor one or more Autopilot clusters using graphs 

and reports generated from the performance counter databases. It 

is easy to store default views, or construct custom queries to drill 

down into a particular issue. Cockpit also serves as a gateway 

allowing operators to fetch arbitrary log files from individual 

computers. Together with the ability to monitor computers‘ 

performance counters, this provides an audited access mechanism 

that eliminates most requirements for direct access to data center 

computers. There is an automated Alert Service that sends emails 

or pages to support staff based on application-defined relational 

queries against the Cockpit database. These queries can capture 

system-wide properties by aggregating data from many computers 

and sub-components. 

Failure 

Healthy 

Probation 

an error is 

reported 

continuously 
error-free for 
long enough 

in Probation too long without 
moving to Healthy 

a repair action is performed 

a deployment 

action is performed 

Figure 2: A simplified diagram of the failure/recovery 

state machine. The Device Manager records its estimate of 

the state of each computer in the cluster as Healthy, Failure 

or Probation. Transitions described in bold text occur as a 

side effect of other Device Manager actions. Transitions 

described in italics occur when a timer expires. The state 

machine is described in Section 6.2. 



 

  

8. CASE STUDY: INDEX SERVING 
Autopilot provides a set of basic services that are sufficient to 

keep the underlying infrastructure of a cluster in good health. We 

chose to keep Autopilot simple by using lazy repair actions and a 

minimalist failure/recovery model. Some application components 

are able to use the Autopilot failure model directly, however they 

must be able to tolerate latencies of seconds or minutes between 

the time that a computer fails and the time that the failure is listed 

in the Device Manager database. 

Applications that need high availability for low-latency customer-

facing services may therefore need to layer custom fault tolerance 

on top of the basic Autopilot components. This section explains 

some of the ways in which the clusters that return query results to 

users as part of the Windows Live Search application interact with 

Autopilot and retain high availability. 

Although the Device Manager is extremely reliable, the search 

application developers chose to keep a private weakly consistent 

snapshot of crucial information so that query results continue to 

flow for as long as possible if Autopilot fails. A web-index 

serving cluster includes machine types such as front-end web 

servers and back-end partitions of the web index. The ground 

truth listing the computers in each of these machine types is stored 

in the Device Manager, however the index serving components 

store a weakly consistent cache of this information (including the 

IP addresses of each peer) on every computer, so that they can 

start up and contact each other autonomously, for example after a 

data center power failure, even if the Device Manager and Active 

Directory are disabled. Likewise each computer caches a local 

copy of the list of computers that the Device Manager considers to 

be failed to avoid wasting time trying to contact those computers; 

however the application maintains its own internal ―soft-failure‖ 

list to route around computers that are misbehaving but may still 

be considered healthy by Autopilot. 

There is a constant stream of queries to the Windows Live Search 

service, and load balancers in the web servers ensure that every 

computer in the back end is serving some fraction of that query 

load at any given time. These load balancers can therefore detect 

very quickly if a computer has stopped responding or is slower 

than its peers. There is substantial redundancy in the web index, 

so if a load balancer is suspicious about a computer it can send 

duplicate queries to redundant partitions: thus the user continues 

to get responses with low latency, but the suspicious computer 

continues to receive traffic allowing the load balancers to learn if 

a transient fault goes away without the need for remedial action. 

Each web server operates its own load balancer so there are 

multiple independent estimators of computer failures. The index 

serving pipeline operates a monitoring service that integrates 

information from all of the web servers. If there is consensus 

agreement that a computer is behaving poorly, the monitor acts as 

a watchdog to tell Autopilot about the error. Due to the amount of 

information available to it, this monitor is able to report failures 

with very few false positives. 

This design for Windows Live Search has been successful in 

allowing the application to ignore all details of deployment, repair 

actions, etc. At the same time the application retains fine control 

over the definition of real-time computer failure conditions, and 

operates reliably in the face of temporary outages of even core 

Autopilot components. 

9. LESSONS LEARNED FROM VERSION 1 
Autopilot was originally deployed in concert with the Windows 

Live Search backend. The design in this paper represents a 

snapshot of the design shortly after that deployment, but the 

system has been under continuous development since then. We 

first note some of the lessons from the first version that have 

guided this development: 

 There were many low-priority issues with the first version that 

have now been fixed; for example it was initially somewhat 

complex to set up and bootstrap a new Autopilot cluster and 

this is now much simpler. Likewise there is support for more 

diverse computer and networking configurations. 

 Some initial Device Manager features were too minimal for 

applications other than Search. For example, applications that 

need to store highly reliable replicated data need more control 

over the throttling of ReImage repair actions. Such 

applications may need the chance to try to copy surviving data 

from non-faulty disks before they are reformatted in order to 

retain a good balance between the number of replicas and the 

mean time to data loss. There may be other examples where 

the interaction between components requires a more complex 

mechanism to specify Device Manager logic. For example, an 

application might request that a particular scale unit should 

not be taken out of service for code deployment if the number 

of failures in another component is above some threshold. 

 Autopilot has so far been used to manage a relatively small 

number of complex, highly-engineered, vertical applications. 

We anticipate supporting a growing number of more 

lightweight applications that, at least in their early stages of 

development, require only a small number of computers and 

may be prototyped very rapidly. Consequently we have been 

increasing the support services offered by Autopilot and we 

may, for example, offer some standard solution for low-

latency failure detection so that applications do not all have to 

implement custom designs like that set out in Section 8. 

 We have also extended support for running applications or 

replicated services that are geographically distributed across 

data centers, and so may require coordination between, for 

example, deployment processes. Future versions of Autopilot 

may take over the management of name services from Active 

Directory in order to reduce the number of custom 

deployment and management tasks in an Autopilot cluster, 

and this will also require coordination between clusters to 

present a consistent view of the name space. 

Overall we have found our assumptions to be sufficiently close to 

reality that no substantial redesign has so far been necessary. 

As mentioned in Section 4, we protect strongly-replicated data 

using replicated state machines employing the Paxos protocol to 

achieve consensus. This design assumes that failures that cause 

data loss are independent, but transient non-destructive failures 

(such as power outages) may be correlated. Both of these 

assumptions have held up; in particular, any design that did not 

allow recovery after all computers are shut down would be 

insufficient. 

We have not yet confronted any major faults inside the data center 

that have defeated our fault-tolerance mechanisms, but that would 

have been contained by a Byzantine fault-tolerant algorithm. 

Avoiding the additional complexity of implementing Byzantine 



 

  

fault-tolerance therefore seems justified. Our staged rollout 

procedure does introduce new code (along with its new potential 

bugs) on a small fraction of a machine type‘s computers at first. 

This model fits Byzantine fault-tolerant assumptions very well, 

and some applications may in future adopt more complex fault 

tolerance strategies if the risk of state corruption justifies it. 

Autopilot contains a number of hand-set thresholds defining the 

policy for deployments, probation state timeouts, etc. We are 

currently recording large amounts of data logging the actions that 

Autopilot takes, along with performance counters capturing the 

state of client applications when those actions are taken. We are 

experimenting with machine learning algorithms to analyze these 

data in order to understand how to improve the policy settings, 

with the ultimate goal of automating many of the current manual 

policies. 

As with all large-scale deployments, we have encountered failures 

of every type that we expected, and some we didn‘t. 

 It is vital to keep checksums of all crucial files (for example 

machine-type manifests) since they will become corrupted. 

Checksums also allow the detection of hand-edited 

configurations that were temporarily changed, for example as 

part of a debugging investigation. Without such automatic 

detection it is very hard to prevent gradual configuration drift 

in a large system. 

 TCP/IP checksums are weak, and messages will be silently 

corrupted unless they are protected by additional application-

level checksums. 

 Networking hardware will malfunction and start flipping large 

numbers of bits; this both causes a storm of retries, and makes 

it inevitable that some errors will remain undetected by TCP. 

 Computers will spontaneously start running very slowly, but 

keep making progress, so systems need to tolerate and detect 

this as well as fail-stop errors. 

 Throttling and load shedding are crucial in all aspects of an 

automated system. Failure detectors must be able to 

distinguish between the symptoms of failure and overloading, 

otherwise overloaded computers may be marked as failed and 

removed from service, amplifying the problem and triggering 

a cascade of failures that disables the entire application. 

Autopilot has been continuously operating its oldest clusters since 

the pre-release Windows Live Search engine was deployed in 

2004. Over that time we have rewritten many components and 

substituted them in place, without ever bringing down a major 

production cluster for planned maintenance. Autopilot supports 

all forthcoming large-scale deployments inside Microsoft, and 

some legacy services have already been ported to run on Autopilot 

clusters. Autopilot supports a vastly lower cost of management 

than legacy Microsoft services, with a very high level of 

reliability. Up to this point, there has been no major outage of a 

customer-facing service that can be directly attributed to an 

Autopilot failure. 
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