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Abstract

Standard techniques (eg. Yule-Walker) are available for learning

Auto-Regressive process models of simple, directly observable, dy-

namical processes. When sensor noise means that dynamics are

observed only approximately, learning can still been achieved via

Expectation-Maximisation (EM) together with Kalman Filtering.

However, this does not handle more complex dynamics, involving

multiple classes of motion. For that problem, we show here how

EM can be combined with the Condensation algorithm, which

is based on propagation of random sample-sets. Experiments have

been performed with visually observed juggling, and plausible dy-

namical models are found to emerge from the learning process.

1 Introduction

The paper presents a probabilistic framework for estimation (perception) and classi-

�cation of complex time-varying signals, represented as temporal streams of states.

Automated learning of dynamics is of crucial importance as practical models may

be too complex for parameters to be set by hand. The framework is particularly

general, in several respects, as follows.

1. Mixed states: each state comprises a continuous and a discrete component.

The continuous component can be thought of as representing the instantaneous

position of some object in a continuum. The discrete state represents the current

class of the motion, and acts as a label, selecting the current member from a set of

dynamical models.

2. Multi-dimensionality: the continuous component of a state is, in general,

allowed to be multi-dimensional. This could represent motion in a higher dimen-

sional continuum, for example, two-dimensional translation as in �gure 1. Other

examples include multi-spectral acoustic or image signals, or multi-channel sensors

such as an electro-encephalograph.



Figure 1: Learning the dynamics of juggling. Three motion classes, emerg-

ing from dynamical learning, turn out to correspond accurately to ballistic motion

(green), catch/throw (yellow) and carry (red).

3. Arbitrary order: each dynamical system is modelled as an Auto-Regressive

Process (ARP) and allowed to have arbitrary order (the number of time-steps of

\memory" that it carries.)

4. Stochastic observations: the sequence of mixed states is \hidden" | not

observable directly, but only via observations, which may be multi-dimensional,

and are stochastically related to the continuous component of states. This aspect is

essential to represent the inherent variability of response of any real signal sensing

system.

Estimation for processes with properties 2,3,4 has been widely discussed both in

the control-theory literature as \estimation" and \Kalman �ltering" (Gelb, 1974)

and in statistics as \forecasting" (Brockwell and Davis, 1996). Learning of models

with properties 2,3 is well understood (Gelb, 1974) and once learned can be used

to drive pattern classi�cation procedures, as in Linear Predictive Coding (LPC) in

speech analysis (Rabiner and Bing-Hwang, 1993), or in classi�cation of EEG signals

(Pardey et al., 1995). When property 4 is added, the learning problem becomes

harder (Ljung, 1987) because the training sets are no longer observed directly.

Mixed states (property 1) allow for combining perception with classi�cation. Allow-

ing properties 2,4, but restricted to a 0th order ARP (in breach of property 3), gives



Hidden Markov Models (HMM) (Rabiner and Bing-Hwang, 1993), which have been

used e�ectively for visual classi�cation (Bregler, 1997). Learning HMMs is accom-

plished by the \Baum-Welch" algorithm, a form of Expectation-Maximisation (EM)

(Dempster et al., 1977). Baum-Welch learning has been extended to \graphical-

models" of quite general topology (Lauritzen, 1996). In this paper, graph topology

is a simple chain-pair as in standard HMMs, and the complexity of the problem lies

elsewhere | in the generality of the dynamical model.

Generally then, restoring non-zero order to the ARPs (property 3), there is no exact

algorithm for estimation. However the estimation problem can be solved by random

sampling algorithms, known variously as bootstrap �lters (Gordon et al., 1993),

particle �lters (Kitagawa, 1996), and Condensation (Blake and Isard, 1997). Here

we show how such algorithms can be used, with EM, in dynamical learning theory

and experiments (�gure 1).

2 Multi-class dynamics
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Observations z

t

are assumed to be conditioned purely on the continuous part x of

the mixed state, independent of y

t

, and this maintains a healthy separation between

the modelling of dynamics and of observations. Observations are also assumed to

be independent, both mutually and with respect to the dynamical process. The

observation process is de�ned by specifying, at each time t, the conditional density

p(z

t

jx

t

) which is taken to be Gaussian in experiments here.

3 Maximum Likelihood learning

When observations are exact, maximum likelihood estimates (MLE) for dynami-

cal parameters can be obtained from a training sequence X
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of mixed states.

The well known Yule-Walker formula approximates MLE (Gelb, 1974; Ljung, 1987),

but generalisations are needed to allow for short training sets (small T ), to include

stochastic parameters B, to allow a non-zero o�set d (this proves essential in ex-

periments later) and to encompass multiple dynamical classes.

The resulting MLE learning rule is as follows.

A

y

�

R

y

=

�

R

y

0

; d

y

=

1

T

y

�K

y

(R

y

0

�A

y

R

y

); C

y

=

1

T

y

�K

y

�

�

R

y

0;0

�A

y

(

�

R

y

0

)

>

�

;

where (omitting the

y

superscripts for clarity) C = BB

>

and

�

R =

0

B

@

�

R

1;1

� � �

�

R

1;K

.

.

.

.

.

.

.

.

.

�

R

K;1

� � �

�

R

K;K

1

C

A

;

�

R

0

=

�

�

R

0;1

� � �

�

R

0;K

�

; R =

0

B

@

R

1

.

.

.

R

K

1

C

A

;

and the �rst-order moments R

i

and (o�set-invariant) autocorrelations

�

R

i;j

, for each

class y, are given by

R

y

i

=

X

y

�

t

=y

x

�

t�i

and

�

R

y

i;j

= R

y

i;j

�

1

T

y

�K

R

y

i

R

y

j

>

;

where

R

y

i;j

=

X

y

t

=y

x

�

t�i

x

�

t�j

>

; T

y

= ]ft : y

�

t

= yg �

X

t:y

t

=y

1:

The MLE for the transition matrix M is constructed from relative frequencies as:

M

y;y

0

=

T

y;y

0

P

y

0

2Y

T

y;y

0

where T

y;y

0

= ]ft : y

�

t�1

= y; y

�

t

= y

0

g:

4 Learning with stochastic observations

To allow for stochastic observations, direct MLE is no longer possible, but an EM

learning algorithm can be formulated. Its M-step is simply the MLE estimate of

the previous section. It might be thought that the E-step should consist simply of

computing expectations, for instance E [x
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conditioned on the entire training set Z
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of observations, given that L is linear

in the R
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etc. (Shumway and Sto�er, 1982). These expected values of auto-

correlations and frequencies are to be used in place of actual autocorrelations and

frequencies in the learning formulae of section 3. The question is, how to compute

them. In the special case Y = f1g of single-class dynamics, and assuming a Gaussian

observation density, exact methods are available for computing expected moments,

using Kalman and smoothing �lters (Gelb, 1974), in an \augmented state" �lter

(North and Blake, 1998). For multi-class dynamics, exact computation is infeasi-

ble, but good approximations can be achieved based on propagation of sample sets,

using Condensation.

Forward sampling with backward chaining

For the purposes of learning, an extended and generalised form of the Conden-

sation algorithm is required. The generalisations allow for mixed states, arbi-

trary order for the ARP, and backward-chaining of samples. In backward chaining,

sample-sets for successive times are built up and stored together with a complete

state history back to time t = 0. The extended Condensation algorithm is given

in �gure 2. Note that the algorithm needs to be initialised. This requires that the
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An alternative algorithm is a sample-set version of forward-backward propagation

(Kitagawa, 1996). Experiments have suggested that probability densities generated

by this form of smoothing converge far more quickly with respect to sample set

size N , but at the expense of computational complexity | O(N

2

) as opposed to

O(N logN) for the algorithm above.

5 Practical applications

Experiments are reported brie
y here on learning the dynamics of juggling using the

EM-Condensation algorithm, as in �gure 1. An o�set d

y

is learned for each class

in Y = f1; 2; 3g; other dynamical parameters are �xed such that that learning d

y

amounts to learning mean accelerations a

y

for each class. The transition matrix is

also learned. From a more or less neutral starting point, learned structure emerges

as in �gure 3. Around 60 iterations of EM su�ce, with N = 2048, to learn dynamics

in this case. It is clear from the �gure that the learned structure is an altogether

plausible model for the juggling process.
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Figure 2: The Condensation algorithm for forward propagation with back-

ward chaining.
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