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Abstract

The power of sampling methods in Bayesian reconstruction of noisy

signals is well known. The extension of sampling to temporal prob-

lems is discussed. E�cacy of sampling over time is demonstrated

with visual tracking.

1 INTRODUCTION

The problem of tracking curves in dense visual clutter is a challenging one. Trackers

based on Kalman �lters are of limited power; because they are based on Gaussian

densities which are unimodal they cannot represent simultaneous alternative hy-

potheses. Extensions to the Kalman �lter to handle multiple data associations

(Bar-Shalom and Fortmann, 1988) work satisfactorily in the simple case of point

targets but do not extend naturally to continuous curves.

Tracking is the propagation of shape and motion estimates over time, driven by

a temporal stream of observations. The noisy observations that arise in realistic

problems demand a robust approach involving propagation of probability distribu-

tions over time. Modest levels of noise may be treated satisfactorily using Gaussian

densities, and this is achieved e�ectively by Kalman �ltering (Gelb, 1974). More

pervasive noise distributions, as commonly arise in visual background clutter, de-

mand a more powerful, non-Gaussian approach.

One very e�ective approach is to use random sampling. The Condensation al-

gorithm, described here, combines random sampling with learned dynamical models

to propagate an entire probability distribution for object position and shape, over

time. The result is accurate tracking of agile motion in clutter, decidedly more
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robust than what has previously been attainable by Kalman �ltering . Despite the

use of random sampling, the algorithm is e�cient, running in near real-time when

applied to visual tracking.

2 SAMPLING METHODS

A standard problem in statistical pattern recognition is to �nd an object paramet-

erised as x with prior p(x), using data z from a single image. The posterior density

p(xjz) represents all the knowledge about x that is deducible from the data. It can

be evaluated in principle by applying Bayes' rule (Papoulis, 1990) to obtain

p(xjz) = kp(zjx)p(x) (1)

where k is a normalisation constant that is independent of x. However p(zjx) may

become su�ciently complex that p(xjz) cannot be evaluated simply in closed form.

Such complexity arises typically in visual clutter, when the super
uity of observable

features tends to suggest multiple, competing hypotheses for x. A one-dimensional

illustration of the problem is illustrated in �gure 1 in which multiple features give
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Figure 1: One-dimensional observation model. A probabilistic observation

model allowing for clutter and the possibility of missing the target altogether is

speci�ed here as a conditional density p(zjx).

rise to a multimodal observation density function p(zjx).

When direct evaluation of p(xjz) is infeasible, iterative sampling techniques can be

used (Geman and Geman, 1984; Ripley and Sutherland, 1990; Grenander et al.,

1991; Storvik, 1994). The factored sampling algorithm (Grenander et al., 1991).

generates a random variate x from a distribution ~p(x) that approximates the pos-
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Sampling methods have proved remarkably e�ective for recovering static objects

from cluttered images. For such problems x is multi-dimensional, a set of parameters

for curve position and shape. In that case the sample-set fs

(1)

; : : : ; s

(N)

g represents



a distribution of x-values which can be seen as a distribution of curves in the image

plane, as in �gure 2.
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Figure 2: Sample-set representation of shape distributions for a curve with

parameters x, modelling the outline (a) of the head of a dancing girl. Each sample

s

(n)

is shown as a curve (of varying position and shape) with a thickness proportional

to the weight �

(n)

. The weighted mean of the sample set (b) serves as an estimator

of mean shape

3 THE CONDENSATION ALGORITHM

The Condensation algorithm is based on factored sampling but extended to ap-

ply iteratively to successive images in a sequence. Similar sampling strategies have

appeared elsewhere (Gordon et al., 1993; Kitigawa, 1996), presented as develop-

ments of Monte-Carlo methods. The methods outlined here are described in detail

elsewhere. Fuller descriptions and derivation of the Condensation algorithm are

in (Isard and Blake, 1996; Blake and Isard, 1997) and details of the learning of

dynamical models, which is crucial to the e�ective operation of the algorithm are

in (Blake et al., 1995).

Given that the estimation process at each time-step is a self-contained iteration

of factored sampling, the output of an iteration will be a weighted, time-stamped

sample-set, denoted s
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t

; n = 1; : : : ; N with weights �
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t
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ately the conditional state-density p(x
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is this sample-set obtained? Clearly the process must begin with a prior density

and the e�ective prior for time-step t should be p(x

t

jZ

t�1

). This prior is of course

multi-modal in general and no functional representation of it is available. It is de-

rived from the sample set representation (s
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t�1
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the output from the previous time-step, to which prediction must then be applied.

The iterative process applied to the sample-sets is depicted in �gure 3. At the

top of the diagram, the output from time-step t � 1 is the weighted sample-set

f(s

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng. The aim is to maintain, at successive time-steps,

sample sets of �xed size N , so that the algorithm can be guaranteed to run within

a given computational resource. The �rst operation therefore is to sample (with
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Figure 3: One time-step in the Condensation algorithm. Blob centres rep-

resent sample values and sizes depict sample weights.

replacement)N times from the set fs
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g, choosing a given element with probability

�
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. Some elements, especially those with high weights, may be chosen several

times, leading to identical copies of elements in the new set. Others with relatively

low weights may not be chosen at all.

Each element chosen from the new set is now subjected to a predictive step. (The

dynamical model we generally use for prediction is a linear stochastic di�erential

equation (s.d.e.) learned from training sets of sample object motion (Blake et al.,

1995).) The predictive step includes a random component, so identical elements

may now split as each undergoes its own independent random motion step. At this

stage, the sample set fs

(n)

t

g for the new time-step has been generated but, as yet,

without its weights; it is approximately a fair random sample from the e�ective

prior density p(x

t

jZ

t�1

) for time-step t. Finally, the observation step from factored

sampling is applied, generating weights from the observation density p(z

t

jx

t

) to

obtain the sample-set representation f(s

(n)

t

; �

(n)

t

)g of state-density for time t.

The algorithm is speci�ed in detail in �gure 4. The process for a single time-step

consists of N iterations to generate the N elements of the new sample set. Each

iteration has three steps, detailed in the �gure, and we comment below on each.

1. Select nth new sample s
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sampled with replacement with probability �
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. This is achieved e�ciently

by using cumulative weights c
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(constructed in step 3).

2. Predict by sampling randomly from the conditional density for the dy-

namical model to generate a sample for the new sample-set.

3. Measure in order to generate weights �
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t

for the new sample. Each weight



is evaluated from the observation density function which, being multimodal

in general, \infuses" multimodality into the state density.

Iterate
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of N new samples as follows:
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(a) generate a random number r 2 [0; 1], uniformly distributed.

(b) �nd, by binary subdivision, the smallest j for which c
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� r
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3. Measure and weight the new position in terms of the measured fea-
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t

:

�

(n)

t

= p(z

t

jx

t

= s

(n)

t

)

then normalise so that

P

n

�

(n)

t

= 1 and store together with cumulative

probability as (s

(n)

t

; �

(n)

t

; c

(n)

t

) where

c

(0)

t

= 0;

c

(n)

t

= c

(n�1)

t

+ �

(n)

t

(n = 1 : : :N):

Figure 4: The Condensation algorithm.

At any time-step, it is possible to \report" on the current state, for example by

evaluating some moment of the state density as
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4 RESULTS

A good deal of experimentation has been performed in applying the Condensation

algorithm to the tracking of visual motion, including moving hands and dancing

�gures. Perhaps one of the most stringent tests was the tracking of a leaf on a bush,

in which the foreground leaf is e�ectively camou
aged against the background.

A 12 second (600 �eld) sequence shows a bush blowing in the wind, the task being

to track one particular leaf. A template was drawn by hand around a still of one

chosen leaf and allowed to undergo a�ne deformations during tracking. Given that

a clutter-free training sequence is not available, the motion model was learned by

means of a bootstrap procedure (Blake et al., 1995). A tracker with default dynam-

ics proved capable of tracking the �rst 150 �elds of a training sequence before losing



the leaf, and those tracked positions allowed a �rst approximation to the model to

be learned. Installing that in a Condensation tracker, the entire sequence could

be tracked, though with occasional misalignments. Finally a third learned model

was su�cient to track accurately the entire 12-second training sequence. Despite

occasional violent gusts of wind and temporary obscuration by another leaf, the

Condensation algorithm successfully followed the object. In fact, tracking is ac-

curate enough using N = 1200 samples to separate the foreground leaf from the

background reliably, an e�ect which can otherwise only be achieved using \blue-

screening". Having obtained the model iteratively as above, independent test se-

quences could be tracked without further training. With N = 1200 samples per

time-step the tracker runs at 6.5Hz on a SGI Indy SC4400 200MHz workstation.

Reducing this to N = 200 increases processing speed to video frame-rate (25Hz),

at the cost of occasional misalignments in the mean con�guration of the contour.

1.46 seconds 2.66 seconds

5.54 seconds 7.30 seconds

Figure 5: Tracking with camou
age. Stills depict mean contour con�gurations,

with preceding tracked leaf positions plotted at 40ms intervals to indicate motion.

5 CONCLUSIONS

Tracking in clutter is hard because of the essential multi-modality of the condi-

tional observation density p(zjx). In the case of curves multiple-hypothesis tracking

is inapplicable and a new approach is needed. The Condensation algorithm is a

fusion of the statistical factored sampling algorithm for static, non-Gaussian prob-

lems with a stochastic model for object motion. The result is an algorithm for

tracking rigid and non-rigid motion which has been demonstrated to be far more

e�ective in clutter than comparable Kalman �lters (Blake et al., 1993).



The new approach raises a number of questions. One is how densities represented

as sample sets can be interrogated in a more general way than simply computing

their moments as in (2). For example it is often desirable to locate local modes

in the state density, representing leading hypotheses. We are seeking therefore to

construct a satisfactory theory of \operators" to interrogate densities in a more

general fashion.

Secondly, it is striking that the density propagation equation in the Condensation

algorithm is a continuous form of the propagation rule of the \forward algorithm"

for Hidden Markov Models (HMMs) (Rabiner and Bing-Hwang, 1993). This sug-

gests the use of mixed discrete/continuous states, propagating over time. Mixed

states would allow switching between multiple models, for instance walk-trot-canter-

gallop, each model represented by a stochastic di�erential equation, with transitions

governed by a discrete conditional probability matrix.

Acknowledgements

The authors would like to acknowledge the support of the EPSRC. They are also

grateful for discussions with Roger Brockett and David Reynard.

References

Bar-Shalom, Y. and Fortmann, T. (1988). Tracking and Data Association. Academic

Press.

Blake, A., Curwen, R., and Zisserman, A. (1993). A framework for spatio-temporal control

in the tracking of visual contours. Int. Journal of Computer Vision, 11, 2, 127{145.

Blake, A. and Isard, M. (1997). Condensation | conditional density propagation for visual

tracking. , in press.

Blake, A., Isard, M., and Reynard, D. (1995). Learning to track the visual motion of

contours. , 78, 101{134.

Gelb, A., ed. (1974). Applied Optimal Estimation. MIT Press, Cambridge, MA.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, 6, 6, 721{741.

Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-gaussian

bayesian state estimation. IEE Proc. F, 140, 2, 107{113.

Grenander, U., Chow, Y., and Keenan, D. M. (1991). HANDS. A Pattern Theoretical

Study of Biological Shapes. Springer-Verlag. New York.

Isard, M. and Blake, A. (1996). Visual tracking by stochastic propagation of conditional

density. In Proc. 4th European Conf. on Computer Vision 343{356, Cambridge, Eng-

land.

Papoulis, A. (1990). Probability and Statistics. Prentice-Hall.

Rabiner, L. and Bing-Hwang, J. (1993). Fundamentals of speech recognition. Prentice-Hall.

Ripley, B. and Sutherland, A. (1990). Finding spiral structures in images of galaxies. Phil.

Trans. R. Soc. Lond. A., 332, 1627, 477{485.

Storvik, G. (1994). A Bayesian approach to dynamic contours through stochastic sampling

and simulated annealing. IEEE Trans. Pattern Analysis and Machine Intelligence,

16, 10, 976{986.


