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Abstract

We pose the problem of 3D human tracking as one of in-
ference in a graphical model. Unlike traditional kinematic
tree representations, our model of the body is a collection of
loosely-connected limbs. Conditional probabilities relating
the 3D pose of connected limbs are learned from motion-
captured training data. Similarly, we learn probabilistic
models for the temporal evolution of each limb (forward
and backward in time). Human pose and motion estimation
is then solved with non-parametric belief propagation us-
ing a variation of particle filtering that can be applied over
a general loopy graph. The loose-limbed model and decen-
tralized graph structure facilitate the use of low-level vi-
sual cues. We adopt simple limb and head detectors to pro-
vide “bottom-up”” information that is incorporated into the
inference process at every time-step; these detectors per-
mit automatic initialization and aid recovery from transient
tracking failures. We illustrate the method by automatically
tracking a walking person in video imagery using four cal-
ibrated cameras. Our experimental apparatus includes a
marker-based motion capture system aligned with the coor-
dinate frame of the calibrated cameras with which we quan-
titatively evaluate the accuracy of our 3D person tracker.

1 Introduction

We present a fully automatic method for tracking human
bodies in 3D. Initialization and failure recovery are facili-
tated by the use of a loose-limbed body model [22] in which
limbs are connected via learned probabilistic constraints.
The tracking problem is formulated as one of inference in a
graphical model and belief propagation is used to estimate
the pose of the body at each time-step. Each node in the
graphical model represents the 3D position and orientation
of a limb (Figure 1). Directed edges between nodes repre-
sent statistical dependencies and these constraints between
limbs are used to form messages that are sent to neighbor-
ing nodes in space and time. Additionally, each node has an
associated likelihood defined over a rich set of image cues
using a learned Gibbs model [19, 28]. The combination of
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Figure 1: Graphical model for a person. Nodes represent limbs
and arrows represent conditional dependencies between limbs. For
clarity only a few temporal dependencies have been shown: in our
model each part 7 at time ¢ is connected by an edge to part 7 at
timest — 1and ¢ + 1.

highly non-Gaussian likelihoods and a six-dimensional con-
tinuous parameter space (3D position and orientation) for
each limb makes standard belief propagation algorithms in-
feasible. Consequently we exploit a form of non-parametric
belief propagation that uses a variation of particle filtering
and can be applied over a loopy graph [13, 25].

There are a number of significant advantages to this ap-
proach as compared to traditional methods for tracking hu-
man motion. Most current techniques model the body as a
kinematic tree in 2D [14], 2.5D [17], or 3D [2, 5, 21, 23]
leading to a high-dimensional parameter space (25-50 di-
mensions is hot uncommon). Searching such a space di-
rectly is impractical and so current methods typically rely
on manual initialization of the body model. Additionally,
they often exploit strong priors characterizing the types of
motions present. When such algorithms lose track (as they
always do), the dimensionality of the state space makes it
difficult to recover.

While the full body pose is hard to recover directly, the
location and pose of individual limbs is much easer to com-
pute. Many good head detectors exist and limb detectors
have been used for some time (e.g. [18]). The approach
we take here can use bottom up information from feature



detectors of any kind and consequently should be able to
cope with a rich variety of input images. In our imple-
mentation we exploit background/foreground separation for
computational simplicity but part detectors which perform
well against arbitrary backgrounds are becoming standard
[18, 26].

With a kinematic tree model, exploiting this partial,
“bottom-up” information is challenging. If one could
definitively detect the body parts then inverse kinematics
could be used to solve for the body pose, but in practice
low-level part detectors are noisy and unreliable. The use
of a loose-limbed model and belief propagation provides an
elegant framework for incorporating information from part
detectors. Because the inference algorithm operates over a
general graph rather than a forward chain as in traditional
particle filter trackers, it is also straightforward to perform
forward—backward smoothing of the limb trajectories with-
out modifying the basic approach.

A loose-limbed body model requires a specification of
the probabilistic relationships between joints at a given time
instant and over time. We represent these non-Gaussian re-
lationships using mixture models that are learned from a
database of motion capture sequences. It is worth noting
that these models encode information about joint limits and
represent a relatively weak prior over human poses, which
is appropriate for tracking varied human motions.

The model also requires an image likelihood measure for
each limb. Using training data of known limb poses in im-
ages, we learn a novel likelihood model that captures the
joint statistics of first and second derivative filter responses
at multiple scales. We formulate and learn the likelihoods
using a Gibbs model based on the maximum entropy prin-
ciple [28].

We test the method by tracking a subject viewed from
four calibrated cameras in an indoor environment with no
special clothing. Quantitative evaluation is performed using
a novel motion capture testbed that provides “ground truth”
human motion from a commercial motion capture system
that is synchronized with the video streams . In particular
we compare the accuracy of our method with that of a more
standard kinematic tree body tracker using annealed particle
filtering [5]. We find that the traditional approach looses
track rapidly compared with the loose-limbed model when
the image quality is poor.

Previouswork

Disaggregated models are not new for finding or tracking
articulated objects and date back at least to Fischler and
Elschlager’s pictorial structures [8]. Variations on this type
of model have been recently applied by Burl et al. [1],
Felzenszwalb and Huttenlocher [7], Coughlan and Ferreira

LAvailable at http://www.cs.brown.edu/research/vision/motioncapture/.

[3], loffe and Forsyth [10, 11, 12] and Ramanan and Forsyth
[18]. loffe and Forsyth [10, 11] first find body parts and
then group them into figures in a bottom-up fashion. The
approach exploits the fact that they have a discrete set of
features that need to be assembled, but it prevents them
from using rich likelihood information to “co-operate” with
the body model when estimating the pose. Ramanan and
Forsyth [18] propose an elegant estimation of appearance
models jointly with the body’s trajectory, but their inference
algorithm relies on the fact that the 2D model has a rela-
tively low-dimensional state-space for each body part. A
similar approach to ours has been adopted in [27] for track-
ing a 2D human silhouette using a dynamic Markov net-
work. A much simplified observation model was adopted in
[27] and their system does not perform automatic initializa-
tion. They adopt a somewhat different inference algorithm
and a comparison between the two methods merits future
research.

In previous work [22] we presented the general loose-
limbed body model and belief propagation algorithm but
only addressed the problem of human pose estimation at a
single time instant; here we extend the inference method
over time to perform visual tracking. In [22], the potential
functions linking limbs were constructed manually whereas
here they are learned from training data and are also ex-
tended in time. Here we also propose a multi-view eigen-
method to implement bottom-up body part detectors and we
exploit a learned Gibbs likelihood model [19].

2 Loose-limbed body model

Following the framework in [22] the body is represented by
a graphical model in which each graph node corresponds to
a body part (upper leg, torso, etc.). Each part has an asso-
ciated configuration vector defining the part’s position and
orientation in 3-space. Placing each part in a global coor-
dinate frame enables the part detectors to operate indepen-
dently while the full body is assembled by inference over
the graphical model. Edges in the graphical model corre-
spond to position and angle relationships between adjacent
body parts in space and time, as illustrated in Figure 1.

In order to describe the body parts in a graphical model,
we assume the variables in a node are conditionally inde-
pendent of those in non-neighboring nodes given the values
of the node’s neighbors. Each part/limb is modeled by a ta-
pered cylinder having 5 fixed and 6 estimated parameters.
The fixed parameters ®; = (I;, w!, w¢, 0¥, 0f) correspond
respectively to the part length, width at the proximal and
distal ends and the offset of the proximal and distal joints
along the axis of the limb as shown in Figure 2. The esti-
mated parameters X7 = (x7, ©F') represent the configura-
tion of the part i in a global coordinate frame where x; € R?
and ©; € SO(3) are the 3D position of the proximal joint



Figure 2: Parameterization of part .

and the angular orientation of the part respectively. The ro-
tations are represented by unit quaternions.

Each directed edge between parts ¢ and j has an as-
sociated potential function ;;(X;,X;) that encodes the
compatibility between pairs of part configurations and intu-
itively can be thought of as the probability of configuration
X; of part j conditioned on the X; of part ;. The poten-
tial ¢;;(X;, X;) is in general non-Gaussian and is approxi-
mated by a mixture of M/;; Gaussians:

Vi (X3, X)) = NN (X5 pij, Aij) + 1)
M,
(1= 2" 6ijmN (X3 Fijm (Xi), Gijm (X))
m=1

where \Y is a fixed outlier probability, p;; and A;; are the
mean and covariance of the Gaussian outlier process, and
Fijm () and G, (+) are functions that return the mean and
covariance matrix respectively of the m-th Gaussian mix-
ture component. §;;,, > 0 is the relative weight of an indi-

vidual component and Z%Zl dijm = L.

2.1 Learninglimb conditionals

Given a ground truth parameter vector X ; for part j, we can

construct the 3D object-to-world transform M (X ;) defin-
ing the pose of the limb j as
M(X;) = M(X;)M(Xi;) @

where M (X;) is the pose of the neighboring spatial or tem-
poral part, and X;; encodes the position and orientation of
part j in 4’s coordinate frame. We can approximate the po-
tential compatibility functions:

Yij (X, X5) XX

( )

(M (X;)|M (X))
( )

(
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X
M (X)) M (Xi5)| M (X))
M(Xi;)) = p(Xi5) 3
by learning the distribution over X;; to fix the Fj;,(-)

and G;jn,,(-) functions from (1). We model all spatial
and temporal potentials using mixtures of Gaussians with

spatial

temporal

Figure 3: Learned Spatial and Temporal Potentials. Spatial and
temporal potentials are illustrated by sampling from them. The
potentials for the lower limbs (arms and legs) and head are shown.
The spatial potentials show the distribution of limb positions and
orientations conditioned on the neighboring limb. Green spheres
indicate the joint position of a sample while the red spheres in-
dicate the distal end of the limb for each sample. The spread of
these samples illustrates the learned distribution encoded by the
potentials. The temporal potentials shown are for the forward time
direction.

M;; = 3 components, and for example the first compo-
nent Fijl (XJ) = Mﬁl(M(XZ)M(XUl)) where Xijl is
the mean of the first learned component of p(X;;). The dis-
tributions are learned using S = 4928 ground truth motion
capture frames of walking data collected at 60 Hz.

We use a standard iterative Expectation-Maximization
(EM) algorithm with K-means initialization for learning the
Gaussian mixture model (GMM), however care must be
taken to estimate the mean and covariance of the quater-
nion orientations. Given a set of .S unit quaternions @ =
{90, 91, qs} where g; = [qix, Gi,ys Q2> Gi,w], WE €X-
tend the approximation presented in [4] to approximate the
mean of @ by

i,y qi,z )
q’Lw i= OQZU}

This approximation suffers from a singularity when any
gi.w — 0. To mitigate the effect of this singularity we com-
pute E,[Q] in a normalized quaternion space constructed
to minimize max,,cq(g; - [0,0,0,1]7). Similarly we ap-
proximate the covariance of Q by computing the deviations
G = q; " * F,[Q] and set Cov,[Q] ~

. . . Tr . . .
Qi,x qi y qi,z :| |: Qi,x iy i,z :| (5)
S Z < |:Qz w qZ w Qz w qi,w , qi,w ’ qi,w

While our learning algorithm is general enough to learn
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distributions that have couplings between positional and ro-
tational components of the state space, resulting in block-
diagonal covariance matrices, for computational purposes
we restrict ourselves to the diagonal-covariance distribu-
tions. For sampling and evaluating the probability of the
GMM we refer the reader to [4].

Figure 3 shows a few of the learned potential distribu-
tions. Samples are shown from several limb-to-limb po-
tentials. For example, the lower leg distribution is shown
conditioned on the pose of the upper leg. The proximal end
of the shin (green circle) is predicted with high confidence
given the thigh location, but there is a wide distribution over
possible ankle locations, as expected.

3 ImageLikelihoods

The inference algorithm outlined in the next section com-
bines the body model described above with a probabilistic
image likelihood model. We define ¢, (X;) to be the likeli-
hood of observing the image measurements conditioned on
the pose of limb 7. Ideally this model would be robust to
partial occlusions, the variability of image statistics across
different input sequences, and variability among subjects.

To that end, we combine a variety of cues including
multi-scale edge and ridge filters following [20]. However,
we explicitly model the conditional dependencies between
the various filter responses by learning the joint density us-
ing a Gibbs model [19, 28] of the form

p(f | X;) o< exp <— > (WO (f,xz->>> :

i

where f represents a vector of filter responses, the £(%) are
functions selecting various marginals and the A\(*) are their
learned weights. Since this likelihood is trained also in sit-
uations where the limb is partially or fully occluded, it is
fairly robust to these conditions.

Separate foreground models are learned for the appear-
ance of each limb. In addition, a pooled background model
is learned from non-limb patches sampled from the training
images. These are combined into a limb likelihood by tak-
ing the likelihood ratio [19]. These likelihood ratios along
with background subtraction information are then combined
across views, assuming independence of the views condi-
tioned on the limb position.

4 Non-parametric BP

Inferring the body pose in our framework is defined as esti-
mating belief in the graphical model. To cope with the con-
tinuous 6D parameter space of each limb, the non-Gaussian
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Figure 4: Message Product. The head, upper arms, and upper
legs send messages to the torso. Samples from these messages
are illustrated by showing the predicted torso location with green
balls. The distribution over the orientation of the torso is illustrated
by showing a red ball at the distal end of the torso for each sample.
While any single message respresents uncertain information about
the torso pose, the product of these messages tightly constrains the
torso position and orientation.

conditionals between nodes, and the non-Gaussian likeli-
hood, we use a form of non-parametric belief propagation
[13, 25]. The approach is a generalization of particle filter-
ing [6] which allows inference over arbitrary graphs rather
than a simple chain. In this generalization the “message”
used in standard belief propagation is approximated with a
particle set, and the conditional distribution used in stan-
dard particle filtering is replaced by a product of incom-
ing message sets. The two formulations [13, 25] have dif-
ferent strengths; we adopt the PAMPAS algorithm [13] be-
cause it maps better to our models where the potentials are
small mixtures of Gaussians and the likelihoods are simple
to evaluate up to an unknown normalization. NBP [25] is
more suitable for applications with complex potential func-
tions. We use the Gibbs sampler from [25] to evaluate prod-
ucts of D > 2 messages.

The message passing framework is illustrated in Figure 4
where the head, upper arms and upper legs all send mes-
sages to the torso. These messages are distributions that are
represented by a set of weighted samples as in particle fil-
tering. Belief propagation requires forming the product of
these incoming messages. As Figure 4 shows, the individ-
ual limbs may not constrain the torso very precisely. The



product over all the incoming messages however produces
a very tight distribution over the torso pose.
A message m;; from node ¢ — j is written

m; (X;) :/1/)z'j(Xqu)¢i(Xz‘) I mwmXiax;,

keA;\j

where A; is the set of neighbors of node i and ¢;(X;)
is the local likelihood associated with node :. The mes-
sage m;;(X;) can be approximated by importance sam-
pling N' = (N — 1)/M;; times from a proposal function
f(X;), and then doing importance correction. As discussed
in [13] the N/ samples may be stratified into groups with
different proposal functions f(-), so some proportion Az N’
of samples come from the product of all incoming messages
A; into the node, A\; N’ come from A;\j (i.e. A4; excluding
j) and Ag N’ from an importance function @Q;(X;) which
is in general a function of the time-step ¢ — we use a limb
proposal distribution based on local image measurements
desribed in Section 5. For algorithmic details see [13].

The basic algorithm leaves open the question of what
proportions to use in the stratified sampler and what or-
der to update the messages in. We use a 3-frame win-
dowed smoothing algorithm for our tracking results where
the estimates at time ¢ are based on observations at times
(t — 1,t,¢ + 1). There are 30 nodes in the graph (10 body
parts at each time-step) and 94 edges (18 between adjacent
body parts within each time-step and two between each part
at each consecutive time-step). All the messages are up-
dated in batch, and this batch update takes place 4 times in
4 belief-propagation iterations. For the first iteration, the
proportion of limb proposal samples is As = 0.50 and this
proportion halves for each subsequent iteration. In each it-
eration the proportion of samples taken from the belief esti-
mate is A\p = 1/2(1 — Ag) and the remainder \; are taken
from the incoming message product.

The algorithm must sample, evaluate, and take products
over Gaussian distributions defined over SO(3) and repre-
sented in terms of unit quaternions. We adopt the approx-
imation given in [4] for dealing with rotational distribu-
tions by treating the quaternions locally linearly in R* —
this approximation is only valid for kernels with small rota-
tional covariance and can in principle suffer from singulari-
ties if product distributions are widely distributed about the
sphere, but we have not encountered problems in practice.

5 Bottom-up Part Detectors

Occlusion of body parts, changes in illumination, and a
myriad of other situations may cause a person tracker to
lose track of some, or all, parts of a body. We argue that re-
liable tracking requires bottom-up processes that constantly

Figure 5: Multi-view Eigenfeatures. We learn the correlations be-
tween the projections of an object in our fixed cameras by concate-
nating the four views at each time-step into a single “multi-view”
image vector. Top row: mean multi-view head. Next three rows:
first three principal components.

search for body parts and suggest their location and pose to
the tracker; we call these “shouters” 2.

One expects shouters to be noisy in that they will some-
times fail to detect parts or will find spurious parts. Fur-
thermore they will probably not be able to differentiate be-
tween left and right arms. Both of these behaviours can
be seen in Figure 6a. Even these noisy “guesses” provide
valuable low-level cues, however, and our belief propaga-
tion framework is designed to incorporate this bottom-up
information in a principled way. As described in Section 4
we use a stratified sampler for the messages to graph node
1 at time ¢ that draws some samples from an importance
function @.(X;). This importance function is constructed
by the node’s shouter process, and draws samples from lo-
cations in pose space (3D location and orientation) near the
detected body parts.

Multi-View Eigenspaces

There are many approaches to body-part detection in single
or multiple images. We have implemented simple eigen-
template detectors for the head, upper arms, and lower legs;
other shouters could be added as desired. Given calibrated
training images with known body-part locations, we build
a set of multi-view training images. Specifically, we con-
struct a single training sample from the four camera views
by concatenating the image regions of the part in each view.
We perform PCA on these multi-view images as described
in [16], keeping 9-40 principal components, depending on
the detector, which describe approximately 80% of the vari-
ation in the training data. Figure 5 shows the first few prin-
cipal components of our head detector model; each part de-
tector is orientation independent.

2This term came from discussions with A. Jepson and D. Fleet.



Using the training data we construct a bounding box in
3-space where we expect each part to appear. We exploit
the fact that the background is static, model it using a mix-
ture model at each pixel, and perform standard foreground
detection [24]. Selecting any camera view, we examine all
foreground pixels within the projected bounding box region
for the given body part. Each pixel defines a ray in 3D
and we search along this ray for matches to our orientation-
independent eigen-model, rejecting any location on the ray
which does not project to a foreground pixel in every view.
For each of the 10 most probable 3D locations we find the
5 closest multi-view matches from the training set and use
their orientations to construct 50 candidate poses for the
proposal mixture distribution Q¢ (X;).

6 Experimentsand Evaluation

Figure 6a shows the automatic initialization of the 3D body
model using bottom-up part detectors. Note that we use
only detectors for the head, upper arms, and calfs and that
these detectors are very inaccurate. While they give a rough
3D location and orientation for the limbs, they cannot differ-
entiate left from right limbs reliably. Note also that the right
calf was not detected. For body parts with no bottom-up de-
tector, the initialization is random (Figure 6b). After several
iterations of belief propagation, the algorithm “finds” the
limbs and has a reasonable distribution over the limbs poses
(Figure 6¢ and d). Figure 7 shows the results of tracking
over 25 frames after automatic initialization.

There are no standard performance metrics for video-
based 3D human tracking. Ramanan and Forsyth [18] report
tracking success whenever there is any overlap between a
limb and the ground truth; this seems overly generous. We
propose a quantitative evaluation of accuracy based on the
absolute distance of true and estimated marker locations on
the limbs. We chose 15 markers corresponding roughly to
the locations of the joints and “ends” of the limbs. For each
limb we sample from the belief and compute the normalized
likelihood of each sample to obtain a weight. These weights
are then used to compute an expected absolute distance in
mm for the markers associated with the limb. The expected
deviations are then summed over all defined virtual markers
to produce the final distance-based error measure.

Figure 8 shows accuracy of the intialization (left) and
tracking results (right). After a few iterations of belief prop-
agation, the initialization error decreases and stays stable.
We also observe that the error in the estimated pose in-
creases only slightly over the tracking sequence.

To compare our method against the state of the art, we
independently implemented a kinematic tree based tracker
that uses annealed particle filtering [5]. This allows a quan-
titative performance comparison between the methods. Our
implementation of [5] uses the same image likelihood as

ance (mm)
(mm)
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Figure 8: Quantitative tracking evaluation. (left) Automatic ini-
tialization error as a function of iterations of the belief propagation
algorithm. (right) Tracking error over a 50-frame sequence. The
dotted black and dashed blue lines show the error for the loose-
limbed method with and without shouters respectively. The red
solid line shows the error for the kinematic tree method [5].

used with the loose-limbed model and both trackers are ini-
tialized with the same ground-truth pose obtained by the
motion capture system. As suggested in [5] the annealing
process uses 10 layers and 200 particles. The distance error
was computed using the same markers but here we sampled
from the particle set, computed the likelihood, and normal-
ized to obtain the weights used in computing the expected
absolute marker distance. We found that the performance
of the tracker was much poorer than that obtained in [5] and
posit that this was due to the more complex image data in
our experiments and the lack of contrast between the fore-
ground and background; see Figure 8.

In Figure 8 the performance of the loose-limbed tracker
is shown with and without body part detectors. Due to
the stochastic nature of the algorithms, the mean and the
standard deviation of the error was computed over 10 runs.
Initially the kinematic tree model appears more accurate.
This is due to the fact that the “ground truth” has the same
kinematic structure while the loose-limbed model is able
to deviate from that. The annealed particle filter however
steadily moves away from the ground truth and becomes
lost. Both versions of the loose-limbed tracker outperform
the competing algorithm after the first three frames. Loose-
limbed tracking with part detection slightly outperforms the
tracker that does not rely on the part detection. In most cases
the variance of the latter is slightly higher. We predict that
this difference would be more significant if we had better
part detectors.

7 Conclusion

We present a probabilistic method for fully automatic 3D
human detection and tracking. We show that a “loose-
limbed” model with continuous-valued parameters can ef-
fectively represent a person’s location and pose, and that
inference over such a model can be tractably performed us-
ing belief propagation over particle sets. The belief prop-
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Figure 6: Automatic Initialization from bottom-up detectors. Each row corresponds to a different camera view (2 of the 4 views
shown). The initialization used two frames but only the first frame is shown for brevity. (a) Samples from the shouter proposal distribution
(head, upper arms, calves only). Notice that they completely fail to detect one calf while the other is detected by both left and right calf
detectors. The upper arms are found but the edge is not well determined. The head is well localized. (b) Samples from the full proposal
distribution. The body parts not constrained by shouters are sampled from a uniform distribution in position and orientation. (c) Samples
from the belief distribution after 30 iterations of belief propagation. (d) Most likely limb poses after 30 iterations.

agation framework allows us to avoid distinguishing be-
tween initialization and tracking, but instead to use bottom-
up part detectors to stabilize the motion estimation and pro-
vide “initialization” cues at every time-step.

The main advantages of our approach are: the complex-
ity of the search task is linear rather than exponential in the
number of body parts; bottom-up processes are integrated
at every frame allowing automatic initialization and recov-
ery from transient tracking failures; the conditional proba-
bilities between limbs in space and time are learned from
training data; a novel Gibbs likelihood model is learned
from training data and models conditional dependencies be-
tween image measurements (filter responses); and forward-
backward smoothing, either over a time-window or an en-
tire sequence, is straightforward. Additionally, we exploit
a novel data set with synchronized 3D “ground truth” and
video data for the quantitative evaluation of performance.
We also compared our method with the state of the art as
proposed in [5].

While our preliminary results are promising, details of
our implementation could be improved. We have used
simple detectors for the head and limbs, but we expect
that hands and feet would provide valuable additional cues.
Other machine learning methods such as AdaBoost [26],

might prove faster and more robust than the eigenfeatures
we adopt. For greater applicability the method must be ex-
tended to use monocular image data and to allow a moving
camera.

There are also limitations imposed by our use of a loose-
limbed model. Since we assume independence of, for ex-
ample, the left and right arms conditional on the torso loca-
tion, it is cumbersome to fully avoid poses where one limb
penetrates another. These problems are much easier to ad-
dress with a full kinematic tree body model, and therefore
one might think of the loose-limbed model as an interme-
diate stage between the bottom-up part detectors and a full
kinematic model. The details and implementation of such a
scheme are postponed to future research.
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