
Fourth Eurographics Workshop on Parallel Graphics and Visualization (2002)
D. Bartz, X. Pueyo, E. Reinhard (Editors)

Distributed rendering of interactive soft shadows

M. Isard†, M. Shand and A. Heirich

Compaq Computer Corporation

Abstract

Recently several distributed rendering systems have been developed which exploit a cluster of commodity comput-
ers by connecting host graphics cards over a fast network to form a compositing pipeline. This paper introduces
a new algorithm which takes advantage of the programmable compositing operators in these systems to improve
the performance of rendering multiple shadow-maps, for example to produce approximate soft shadows. With an
nVidia GeForce4 Ti graphics card the new algorithm reduces the number of required render nodes by nearly a fac-
tor of four compared with a naive approach. We show results that yield interactive-speed rendering of 32 shadows
on a 9-node Sepia2a distributed rendering cluster.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 3-Dimensional Graphics
and Realism

1. Introduction

There is an extensive literature on rendering shadows at in-
teractive rates. The two most popular methods are shadow
volumes1 and shadow maps12 both of which can be imple-
mented partially or completely in the current generation of
programmable commodity graphics cards, such as the nVidia
GeForce4 and the ATI Radeon 8500. Shadow volumes can
be used to cast accurate hard shadows without aliasing ar-
tifacts, but there is some extra cost in preprocessing the
geometry3 and if the scene is made up of many small objects,
for example the leaves of a plant, performance can become
limited by stencil-buffer fill rate. It is also difficult to modify
shadow volume techniques to deal with effects such as hair
and fog6.

Shadow maps remove some of the limitations of shadow
volumes at the cost of introducing aliasing artifacts due to
mismatched projection resolutions in the shadow map and
the eye view12, 6. Shadow maps become inefficient when ren-
dering multiple shadows however, since 2L rendering passes
are needed to render a scene lit by L point sources (L passes
to render the shadow maps, and L passes feeding into an ac-
cumulation buffer to composite the illumination information

† Now at Microsoft Research

from each light in turn). Hardware-accelerated shadow map-
ping also consumes at least one texture unit which is a scarce
resource in current graphics cards.

Several distributed rendering systems have recently been
developed which exploit a cluster of commodity comput-
ers, each with a host graphics card and linked by a fast
network5, 11, 8. Typically these systems can be programmed
with a range of simple compositing operators which com-
bine each locally rendered pixel with a remote pixel from
one or more nodes, and output the transformed result to sub-
sequent nodes in the rendering pipeline. The available com-
positing operators usually include for example depth com-
pare, alpha blending and antialiasing. A given application
programs the nodes under its control with an appropriate set
of compositing operators to create a rendering pipeline that
meets that application’s overall rendering needs.

This paper presents an algorithm which uses a custom
compositing operator to render a shadow mapped scene on a
distributed rendering cluster. Illumination by L point sources
can be rendered by (L/K)+ 1 nodes where K is the number
of texture units on each graphics card. For walkthrough ap-
plications each node requires a single rendering pass, while
for scenes with moving lights or geometry K + 1 passes are
needed per node. In addition all K texture units are avail-

c© The Eurographics Association 2002.



Isard, Shand and Heirich / Distributed Soft Shadows

able for rendering material properties allowing a full range
of multi-texture material effects.

2. Shadow mapping

Shadow maps were proposed by Lance Williams in 197812

and have become increasingly popular for interactive shad-
ows as hardware support for rendering them has become
prevalent10, 4. We will briefly describe how shadow maps are
implemented when depth textures are available, for example
using the ARB_shadow OpenGL extension. Shadow maps
can also be implemented somewhat less efficiently without
depth textures, for example using the ATI Radeon 8500, and
there is a brief discussion of the tradeoffs involved in sec-
tion 4.2.

Following standard notation10 we introduce three homo-
geneous coordinate systems; clip coordinates, world coor-
dinates and light coordinates. The scene’s geometry is ex-
pressed in world coordinates x = (x,y,z,w)T . The geom-
etry can be projected into the eye’s viewpoint using the
projective transformation matrix FcMc to give clip coor-
dinates xc = (xc,yc,zc,wc)T = FcMcx. Similarly the pro-
jective transformation F lMl converts world coordinates to
light coordinates xl = (xl ,yl ,zl ,wl)T = F lMlx. Following
OpenGL coordinate-transformation conventions, Mc and Ml

are typically rigid-body transformations effecting scale and
rotation and Fc and F l are projections to a clip frustum.

A scene illuminated by a single point light source is ren-
dered in two passes. First the scene is rendered from the
viewpoint of the light source and the resulting image (the
shadow map) is stored in a depth texture where T (u,v) is the
depth value stored at coordinate (u,v). The shadow map is
used to store the scene depth projected into light-view coor-
dinates, so

T (
xl

wl ,
yl

wl ) =
zl

wl .

Next the scene is rendered again from the eye’s viewpoint
with the shadow map bound to one of the graphics card’s
texture units. During polygon rasterisation the texture coor-
dinates xt = (xt ,yt ,zt ,wt) at pixel xc are generated using the
texture matrix F lMl(FcMc)−1 and thus transformed to light
coordinate space. At each pixel the texture hardware is used
to read a value

zm = T (
xt

wt ,
yt

wt )

from the shadow map and a depth comparison is done; if
zt/wt < zm + ε then the pixel is considered to be illumi-
nated, otherwise the pixel is in shadow. The depth bias ε is
included to reduce self-shadowing artifacts and should be
chosen based on the geometry of the model being used9.

Percentage closer filtering9 can be achieved by en-
abling linear filtering on the texture map using e.g. the
ARB_depth_texture OpenGL extension, resulting in a

per-pixel illumination value s ∈ [0,1] which varies from
s = 0 for points completely in shadow to s = 1 for points
which are completely illuminated. Programmable fragment
shaders available on high-end commodity graphics cards can
then be used to set the final pixel value p f = s.p where p is
the fully-illuminated pixel colour.

When K > 1 texture units are available on a graphics card
it seems attractive to render multiple shadows in one pass by
generating K shadow maps from the viewpoints of K differ-
ent lights and binding each map to a different texture unit.
It is then straightforward to compute sk, the illumination co-
efficient for each light, however computing the final pixel
value p f is problematic since the rendering pipeline has al-
ready summed the lighting contributions from the K lights
into a single pixel colour p. This difficulty is overcome by
decomposing the final pixel colour into illumination and ma-
terial properties as described in the following section.

3. A lighting compositing operator

In recent years several programmable distributed render-
ing frameworks have been developed, including Sepia25,
Lightning-211 and PixelFlow8. Rendering nodes are ar-
ranged in a linear pipeline and each node generates an image
of pixel values which are computed as a function of a lo-
cally rendered image and the output of the preceding render
node in the pipeline. This function is known as a compositing
operator and can be programmed in an application-specific
manner. We have taken advantage of this programmability
to design a new compositing operator suitable for the dis-
tributed rendering of global-illumination properties such as
shadows.

Typically the locally rendered image is captured by the
card using a DVI interface and each pixel consists of a
24-bit (r,g,b) triplet. The data layout of the compositing
function has more flexibility and in general a network pixel
can contain more than 24 bits of data to be interpreted in
an application-specific manner. We use this flexibility to
decompose the pixel colour information into illumination-
dependent and material-dependent channels which can then
be recombined in a final compositing step as described in
the following paragraphs; implementations using OpenGL
on specific commodity graphics cards are given in section 4.

A typical pixel lighting equation, taken from the OpenGL
specification, gives the final colour p f of a pixel illuminated
by L lights as

p f = e+ma × ca+

L

∑
λ=1

(

(ma × ca
λ)iaλ +(md × cd

λ)idλ +(ms × cs
λ)isλ

)

.
(1)

Here e is the light emitted by the material, ma, md and
ms are the ambient, diffuse and specular material colours
respectively and ca is the global ambient illumination.

c© The Eurographics Association 2002.



Isard, Shand and Heirich / Distributed Soft Shadows

Each light λ has ambient, diffuse and specular illumination
colours ca

λ, cd
λ and cs

λ respectively, and iaλ, idλ and isλ are ambi-
ent, diffuse and specular attenuation coefficients which de-
pend on per-pixel lighting parameters such as the location
and orientation of the illuminated object, spotlighting, fog,
etc. In this notation a bold-face variable u refers to a colour
vector (ur,ug,ub) and u× v denotes component multiplica-
tion (urvr,ugvg,ubvb).

The lighting equation can be modified to include shad-
owing effects by including shadowing coefficients sλ as fol-
lows:

p f = e+ma × ca+

L

∑
λ=1

(

(ma × ca
λ)iaλsλ +(md × cd

λ)idλsλ +(ms × cs
λ)isλsλ

)

which can be rewritten as

p f = e+ma × (ca +Ia)+md ×Id +ms ×Is (2)

where

Ia =
L

∑
λ=1

ca
λiaλsλ, Id =

L

∑
λ=1

cd
λidλsλ, Is =

L

∑
λ=1

cs
λisλsλ.

Since Ia, Id and Is do not depend on ma, md or ms this
suggests a strategy for partitioning the compositing pipeline
into illumination nodes which take account of lighting pa-
rameters and shadowing and material nodes which are pro-
grammed with the material properties of the scene objects.
Given a pipeline in which each render node has K active
textures, we will assign N nodes to be illumination nodes
allowing NK distinct light sources. We make the somewhat
limiting assumption that the lights can be partitioned into N
subsets (Ln)

N
n=1 each of size K such that all the lights in a

given subset are the same colour, i.e.

(ca
λ = ca

n, cd
λ = cd

n , cs
λ = cs

n) ∀ λ ∈ Ln.

This assumption is reasonable for many scenes, in particular
when soft shadows are being simulated by placing multi-
ple point light sources at sample positions on an area light
source.

The illumination node is then programmed so that the
colour at each pixel is given by the triplet (Ia

n ,Id
n ,Is

n) where

Ia
n = ∑

λ∈Ln

iaλsλ, Id
n = ∑

λ∈Ln

idλsλ, Is
n = ∑

λ∈Ln

isλsλ. (3)

The compositing function at illumination node n com-
putes three colours, pa

n, pd
n and ps

n where

pa
n = pa

n−1 + ca
nI

a
n , pd

n = pd
n−1 + cd

nI
d
n , ps

n = ps
n−1 + cs

nI
s
n

and ca
n, cd

n and cs
n are constants programmed into the com-

positing hardware on a per-frame or per-scene basis.

The output of node N, the final illumination node in the
pipeline, is an image of 9-component pixels (pa

N ,pd
N ,ps

N)

which can be composited with the material colours of the
scene in up to four material nodes at the end of the pipeline.
The material nodes compute the following pixel colour
triplets and compositing operations:

Specular material node N +1: S = (ms
r,m

s
g,m

s
b)

pa
N+1 = pa

N , pd
N+1 = pd

N , ps
N+1 = ps

N ×S

Diffuse material node N +2: D = (md
r ,md

g ,md
b)

pa
N+2 = pa

N+1, pds
N+2 = pd

N+1 ×D+ps
N+1

Ambient material node N +3: A = (ma
r ,m

a
g,m

a
b)

pads
N+3 = pa

N+2 × (ca +A)+pds
N+1

Emissive material node N +4: E = (me
r ,m

e
g,m

e
b)

p f = E+pads
N+3

where ca is a constant ambient lighting colour programmed
into node N +3 on a per-frame or per-scene basis. Note that
no shadow or lighting computations are done on any of the
material nodes, so all texture units are available for rendering
the material properties of the scene.

Obvious simplifications to the lighting model can be made
which reduce the number of material nodes. For example,
photorealistic rendering usually assumes no ambient light-
ing, which removes the need for node N + 3. Scenes which
do not include light-emitting materials can be rendered with-
out node N + 4. A final simplification can be made if the
specular material colour ms is the same for all objects. In
this case (assuming no ambient or emissive lighting), the
compositing function in the illumination nodes is modified
to compute

pd
n = pd

n−1 + cd
nI

d
n , ps

n = ps
n−1 +(ms × cs

n)I
s
n (4)

and only a single material node is needed which computes

D = (md
r ,md

g ,md
b), p f = pd

N ×D+ps
N . (5)

Our implementation in fact also provides limited support for
global ambient illumination when ca = cd

n for some n and
either ma = 0 or ma = md for all materials in the scene.
Illumination node n is then programmed to compute

pd
n = pd

n−1 + cd
n(Id

n +Ia), ps
n = ps

n−1 +(ms × cs
n)I

s
n (6)

where

Ia =

{

1 if ma = md

0 otherwise
(7)

and we use this for example to simulate the light-emitting
material in the bottom image of figure 3 (see color plates).

4. Implementation

We have implemented the lighting compositing operator (6)
in the Sepia2a parallel rendering framework using nVidia

c© The Eurographics Association 2002.



Isard, Shand and Heirich / Distributed Soft Shadows

GeForce4 Ti 4600 cards. (At the time of writing a Sepia
cluster populated with nVidia GeForce4 Ti 4600 cards is not
yet available so results shown are based on a cycle accu-
rate simulated execution of the compositing hardware de-
signs.) We have also investigated the feasibility of using
ATI Radeon 8500 cards and this is briefly discussed in sec-
tion 4.2. Sepia2a is based on the Sepia2 distributed rendering
architecture5 but supports transmission of the local image
from a graphics card directly to the Sepia PCI card using a
DVI interface without passing through the host PCI bus. The
natural size for a network pixel is 64 bits and illumination
node n must compute pd

n and ps
n, for which we allocate 11

and 10 bits per channel respectively leaving 1 bit unused.

Illumination node n renders K lights in K +1 passes. The
first K passes are used to generate shadow-maps from the
viewpoint of each light in turn, and details for the two graph-
ics cards are given in sections 4.1 and 4.2 respectively. The
final pass renders the image which will be sent to the Sepia
card for compositing.

The illumination-node compositor computes (6) so the
host graphics card must supply (Id

n + Ia) and Is
n defined

in (3) and (7). The K texture units can be programmed to
generate the sk, so it remains to generate idk , isk for each
light along with Ia and combine the coefficients. Both tar-
get graphics cards contain programmable fragment shader
stages which can be used for per-pixel lighting compu-
tations. In both cases the number of interpolator inputs
is severely limited to a four-channel (r,g,b,a) primary
colour, a three-channel (r,g,b) secondary colour, and K four-
channel (r,g,b,a) texture values. Since we wish to use all of
the texture units for shadowing we are constrained to place
isk, idk and Ia in the primary and secondary colours which
permits seven channels in all.

We limit ourselves to generating diffuse and specular il-
lumination components for at most three unique lights, and
place (id1 , id2 , id3 ,Ia) in the primary colour and (is1, i

s
2, i

s
3) in

the secondary colour. If K > 3 we therefore enforce the re-
striction that the K lights must be partitioned into three sub-
sets G1, G2 and G3 such that the light positions lk are clus-
tered around centres c1, c2 and c3 and

lk ≈ ci ∀ k ∈ Gi.

On our target cards K is at most 4 so in practice this re-
striction amounts to placing two of the four lights close
together, which is reasonable for our target application of
soft-shadowing which clusters many identical lights close
together in any case. Since shadow boundaries have much
higher spatial frequency than either diffuse or specular light-
ing variations it is still worthwhile to generate 4 shadows
given only 3 lighting locations. It would be possible at the
expense of abandoning support for simple ambient lighting
to place is4 for a fourth light location in the alpha channel of
the primary colour to account for the higher spatial variation
of specular lighting compared with diffuse lighting.

It is straightforward to persuade OpenGL to place the de-
sired information in the primary and secondary colour chan-
nels. All material diffuse and specular RGB values are set to
(1,1,1), while the other specular parameters such as shini-
ness are set according to the desired material properties for
each object. Materials for which ma = md have their al-
pha diffuse material colour set to 1, otherwise it is set to 0.
Three lights are enabled at locations c1, c2 and c3 with dif-
fuse and specular colours both set to (1,0,0,0), (0,1,0,0)
and (0,0,1,0) respectively and programmed with the de-
sired parameters for attenuation, spotlighting, etc. Details of
programming the fragment shaders are given in sections 4.1
and 4.2.

The material node images are all straightforward to gen-
erate. No special graphics card programming is required;
the scene is rendered from the eye’s viewpoint with lighting
disabled and object colours set to the appropriate material
colour md or ms.

4.1. nVidia GeForce3/4 Ti

We have implemented the illumination-node code on
an nVidia GeForce4 Ti 4600 graphics card. The pro-
gramming model is identical for other cards in the
GeForce3 and GeForce4 Ti series. These cards support
depth textures so generating shadow map k is straight-
forward. A texture map of the desired size is created
with internal format DEPTH_COMPONENT24_ARB and
the scene is rendered from viewpoint lk with all light-
ing, texturing and colour buffers disabled. If available the
WGL_ARB_render_texture extension can be used to
render directly to the texture otherwise the image is rendered
to the framebuffer and copied internally to the graphics card
using glCopyTexSubImage2D.

Before rendering the scene from the eye’s viewpoint,
texture k is bound to texture unit k and all texture units are
programmed to clamp to a border depth of 1.0, with linear
filtering enabled. GL_TEXTURE_COMPARE_MODE_ARB
is set to GL_COMPARE_R_TO_TEXTURE with
GL_TEXTURE_COMPARE_FUNC_ARB set to
GL_LEQUAL. Coordinate generation is enabled for all
four texture coordinates in GL_EYE_LINEAR mode, and
the (s, t,r,q) GL_EYE_PLANE values are respectively set to
the four rows of the matrix SF lMl where

S =









0.5 0.0 0.0 0.5
0.0 0.5 0.0 0.5
0.0 0.0 0.5 0.5
0.0 0.0 0.0 1.0









.

Three general combiner stages are used, and the program is
given in figure 1.

4.2. ATI Radeon 8500

We have investigated implementing illumination nodes us-
ing an ATI Radeon 8500 card which does not support depth

c© The Eurographics Association 2002.



Isard, Shand and Heirich / Distributed Soft Shadows

Stage

0 spare0′rgb = texture0rgb × const0rgb + texture1rgb × (1− const0rgb)

0 spare0′a = texture2a.1+ texture3a.1

1 spare0′rgb = spare0rgb × (1− const1rgb)+ spare0a × const1rgb

2 spare0′rgb = spare0rgb •primaryrgb
2 spare1′rgb = spare0rgb • secondaryrgb

Final finalrgb = spare0rgb × const0rgb + spare1rgb × (1− const0rgb)+primaryalpha × const0rgb

On entry

const0 = (1,0,0,0) const1 = (0,0,1,0)

primary = (id0 , id1 , id2 ,Ia) secondary = (is0, i
s
1, i

s
2,0) texturek = (sk,sk,sk,sk)

On exit
final = (id0s0 + id1s1 + id2(s2 + s3)+Ia,

is0s0 + is1s1 + is2(s2 + s3),

is0s0 + is1s1 + is2(s2 + s3))

Figure 1: The register combiner program for rendering four shadows on an nVidia GeForce4 Ti graphics card.

textures. Although the card has K = 6 active textures, the
depth comparison must be performed as part of the frag-
ment shader program and so two texture coordinates must
be assigned to each shadow map so at most three shadows
can be rendered in a single pass. A 16-bit precision depth
comparison can be implemented in a two-pass shader pro-
gram as opposed to the 24-bit comparison performed by the
depth texture functionality on the nVidia card. Unfortunately
percentage-closer filtering is not possible with this imple-
mentation and so aliasing artifacts are much more visible.
In addition the performance is significantly worse than the
GeForce4 Ti 4600 implementation so all results are shown
using the nVidia card.

5. Results

We tested the algorithm on a set of simple models using an
nVidia GeForce4 Ti 4600 graphics card in a Compaq Evo
D500 1.7 GHz P4 workstation running Redhat Linux 7.2.
Figure 3 (see color plates) shows images as they would be
rendered at 800 × 600 pixels on a 9-node Sepia2a cluster
using 512× 512-pixel textures for the shadow maps. As a
Sepia2a cluster populated with GeForce4 Ti 4600 graphics
cards was not available, the compositing is done in simula-
tion. The local rendering code is run exactly as it will be in a
full system, then the image is grabbed using glReadPix-

els and a software simulation of the compositing operators
is run to generate the final image. Table 2 shows timings
measured on our single node test setup. The Sepia architec-
ture introduces a latency of approximately two frame refresh
periods, while the number of frames rendered per second is
approximately that of the slowest node in the pipeline. The
nVidia driver we used for Linux does not support direct ren-
dering to textures, though this is supported by the Windows
drivers. We measure the time for the glCopyTexSubIm-
age2D call to be 1.31 ms per computed shadow map.

6. Discussion

We demonstrate an algorithm which is able to render ap-
proximate soft shadows at interactive rates on a cluster of
commodity computers linked by a Sepia2a compositing net-
work. The number of lights scales linearly with the num-
ber of available nodes and increasing the number of render-
ing nodes results in a negligible reduction in performance.
For walkthrough applications the new algorithm reduces the
number of required rendering nodes by a ratio of 1 + ε : 4
compared with a naive approach, where ε → 0 as the num-
ber of lights increases. For scenes with changing geometry a
naive approach renders one shadow per node using 2 render-
ing passes. The new algorithm must perform K +1 rendering
passes to render K shadows, so as long as the timing budget

c© The Eurographics Association 2002.



Isard, Shand and Heirich / Distributed Soft Shadows

Model\Lights per node 1 2 3 4

Balls (no shadows) 0.98 1.13 1.43 1.44
Balls (walkthrough) 1.11 1.26 1.55 1.57
Balls (moving lights) 3.31 5.65 8.25 10.71

Horse (no shadows) 1.17 1.30 1.45 1.60
Horse (walkthrough) 1.26 1.40 1.54 1.69
Horse (moving lights) 2.39 3.82 5.66 7.49

Plant (no shadows) 1.13 1.08 1.18 1.35
Plant (walkthrough) 1.24 1.21 1.29 1.47
Plant (moving lights) 3.47 5.64 7.98 10.70

Box (no shadows) 0.54 0.55 0.58 0.62
Box (walkthrough) 0.77 0.79 0.81 0.83
Box (moving lights) 2.04 3.53 5.31 6.98

Figure 2: Rendering times in ms for the models in figure 3
(see color plates) which are shown rendered with 4 lights per
node. Times marked “no shadows” correspond to render-
ing the scene in full colour with OpenGL lighting enabled.
Times marked “walkthrough” correspond to rendering the
scene with precomputed shadow maps with the fragment
shader programmed as described in figure 1. Times marked
“moving lights” are as for “walkthrough” but the shadow
maps are recomputed at each frame. Timings are given for
a single node and the Sepia architecture renders composited
frames at approximately the speed of the slowest node in the
pipeline. Note that for “walkthrough” scenes these render-
ing times are a small fraction of typical screen refresh rates
and even the slowest “moving lights” rendering times corre-
spond to refresh rates above 93 Hz.

permits at least two shadow maps to be rendered per node
the algorithm still decreases the number of required render
nodes by a ratio of 1 + ε : 2, while the ratio of 1 + ε : 4 is
achieved if the timing budget permits 5 shadow maps per
illumination node.

The main limitation of the method is that it scales badly
with increasing scene complexity as each node must ren-
der the full scene geometry. For walkthrough applications
it would be straightforward to perform a sort-first decom-
position of the scene so that each illumination node renders
only a subset of the visible geometry. It is well known7 how-
ever that sort-last scene decompositions allow better load
balancing of distributed rendering than sort-first methods.
A sort-last Z-compositing approach is feasible using the al-
gorithm presented here at the expense of transferring more
data in each network pixel. Illumination nodes would have
to transmit not only the 63-bit diffuse and specular compo-
nents (pd

n ,ps
n) but also (r,g,b,z) channels describing a par-

tially rendered image which would typically be assigned 48
bits in total: 8 bits per channel for colour and 24 bits for
the Z-buffer. Alternatively it would be possible to use a ren-

dering architecture which supports a “join” operator taking
network pixels from more than one preceding render node in
the pipeline without increasing the maximum number of bits
transmitted in a network pixel.

Minor updates to the algorithm would allow rendering
shadows cast by pseudo-transparent objects using depth-
peeling2. Unfortunately the number of rendering nodes used
by such an approach is O(D2) where D is the number of
depth-peeling layers, so this is probably not feasible for D
much greater than 4.

References

1. F. Crow. Shadow algorithms for computer graphics. In
Proceedings of SIGGRAPH, pages 242–248, 1977.

2. C. Everitt. Order independent transparency. Technical
report, nVidia, developer.nvidia.com.

3. C. Everitt and M.J. Kilgard. Practical and robust
stenciled shadow volumes for hardware-accelerated
rendering. Technical report, nVidia, devel-
oper.nvidia.com.

4. C. Everitt, A. Rege, and C. Cebenoyan. Hardware
shadow mapping. Technical report, nVidia, devel-
oper.nvidia.com.

5. A. Heirich and L. Moll. Scalable distributed visualiza-
tion using off-the-shelf components. In IEEE Parallel
Visualization and Graphics Symposium, pages 55–60,
1999.

6. T. Lokovic and E. Veach. Deep shadows. In Proceed-
ings of SIGGRAPH, pages 385–392, 2000.

7. S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sort-
ing classification of parallel rendering. IEEE Computer
Graphics and Applications, 14(4):23–32, 1994.

8. S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-
speed rendering using pixel composition. Computer
Graphics, 26(2):231–240, 1992.

9. W.T. Reeves, D.H. Salesin, and R.L. Cook. Rendering
antialiased shadows with depth maps. In Proceedings
of SIGGRAPH, pages 283–291, 1987.

10. M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and
P. Haeberli. Fast shadows and lighting effects using
texture mapping. Computer Graphics, 26(2):249–252,
1992.

11. G. Stoll, M. Eldridge, D. Patterson, A. Webb,
S. Berman, R. Levy, C. Caywood, M. Taveira, S. Hunt,
and P. Hanrahan. Lighting-2: A high-performance dis-
play subsystem for PC clusters. In Proceedings of SIG-
GRAPH, pages 141–148, 2001.

12. L. Williams. Casting curved shadows on curved sur-
faces. In Proceedings of SIGGRAPH, pages 270–274,
1978.

c© The Eurographics Association 2002.



Isard, Shand and Heirich / Distributed Soft Shadows

Figure 3: Various simple models rendered with 32 point light sources. The first three images approximate two area lights with
16 samples each and the bottom right image approximates a single area light with 32 samples.

c© The Eurographics Association 2002.


