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Abstract

A Bayesian approach to intensity-based object localisation is presented that employs a learned proba-
bilistic model of image filter-bank output, applied via Monte Carlo methods, to escape the inefficiency of
exhaustive search.

An adequate probabilistic account of image data requires intensities both in the foreground (ie over
the object), and in the background, to be modelled. Some previous approaches to object localisation by
Monte Carlo methods have used models which, we claim, do not fully address the issue of the statistical
independence of image intensities. It is addressed here by applying to each image a bank of filters whose
outputs are approximately statistically independent. Distributions of the responses of individual filters, over
foreground and background, are learned from training data. These distributions are then used to define a
joint distribution for the output of the filter bank, conditioned on object configuration, and this serves as an
observation likelihood for use in probabilistic inference about localisation.

The effectiveness of probabilistic object localisation in image clutter, using Bayesian Localisation, is
illustrated. Because it is a Monte Carlo method, it produces not simply a single estimate of object config-
uration, but an entire sample from the posterior distribution for the configuration. This makes sequential
inference of configuration possible. Two examples are illustrated here: coarse to fine scale inference, and
propagation of configuration estimates over time, in image sequences.

1 Introduction

The paper develops a Bayesian approach to localising objects in images. Approximate probabilistic inference
of object location is done using a learned likelihood for the output of a bank of image filters. The new approach
is termed Bayesian Localisation1

Following the framework of “pattern theory” (Grenander, 1981; Mumford, 1996), an image is an intensity
function I(x); x 2 D � R2, taken to contain a template T (x) that has undergone certain distortions. Much

�Current address: Microsoft Research, 1 Guildhall Street, Cambridge, UK
1Previously (Sullivan et al., 1999) we have referred to the new approach as “Bayesian Correlation”, but have since been persuaded

that this is a somewhat misleading term.
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of the distortion is accounted for as a warp of the template T (x) into an intermediate image ~I by an (inverse)
warp mapping gX :

T (x) = ~I(gX(x)); x 2 S; (1)

where S is the domain of T , and gX is parameterised by X 2 X over some configuration space X (for instance
planar affine warps). The remainder of the distortion in the process of image formation, is taken to have the
form of a random process applied pointwise to intensity values in ~I , to produce the final image I:

I(x) = f(~I(x);x; w(x)); (2)

where w is a noise process and f is a function that may be nonlinear. Note that (2) may include a component
of sensor noise but in practice, this is emphatically not its principal role. Camera sensor noise is negligible
compared with the principal source of variability that needs to be modelled probabilistically: illumination
changes, and the residual variability between objects of a given class that is unmodelled otherwise.

Analysis “by synthesis” then consists of the Bayesian construction of a posterior distribution for X . That
is, given a prior distribution 2 p0(X) for the configuration X , and an observation likelihood L(X) = p(ZjX)
where Z � Z(I) is some finite-dimensional representation of the image I , the posterior density for X is given
by

p(XjZ) / p0(X)p(ZjX): (3)

In the straightforward case of normal distributions, (3) can be computed in closed form, and this can be effective
in the fusion of visual data (Matthies et al., 1989; Szeliski, 1990). In the non-Gaussian cases commonly arising,
for example in image clutter or with multiple models, sampling methods are effective (Geman and Geman,
1984; Gelfand and Smith, 1990; Grenander et al., 1991), and that is what we use here.

There have been a number of powerful demonstrations in the pattern theory genre, especially in the field of
face analysis (Cootes et al., 1995; Beymer and Poggio, 1995; Vetter and Poggio, 1996) and in biological images
(Grenander and Miller, 1994; Storvik, 1994; Ripley, 1992). A great attraction of pattern theoretic algorithms
is that they can potentially generate not just a single estimate of object configuration, but an entire probability
distribution. This facilitates sequential inference, across spatial scales, across time for image sequence analysis,
and even across sensory modalities.

The previous work most closely related to Bayesian localisation is as follows. First Grenander et al.
(1991)use randomly generated diffeomorphisms as a mechanism for Bayesian inference of contour shape. Its
drawback is that it treats the intensities of individual, neighbouring pixels as independent which leads to un-
realistic observation likelihood models. Second, the algorithm of Viola and Wells (1995) for registration by
maximisation of mutual information contains the key elements of probabilistic modelling and learning of fore-
ground, but does not take account of background statistics. It computes a single estimate of object pose, rather
than sampling the entire distribution of the posterior. Thirdly, Geman and Jedynak (1996) use probabilistic fore-
ground/background learning for road tracking but compute only a single estimate of pose rather than sampling
from the posterior; furthermore, the statistical independence of observations, which is a necessary assumption
of the method, is not investigated. Attributes of these and other important prior work are summarised in table
1, in terms of elements of Bayesian Localisation as follows.

2The problem of how to obtain the prior p0 is a much debated issue for Bayesian inference in general which is entirely outside the
scope of this paper. We simply adopt the common line of developing a methodology in which the role of the prior is at any rate explicit.
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IB Intensity Based observations, not just edges.

FL Foreground Learning in terms of probability distributions estimated from one or more training examples.

MS Multiple Scale search is well known to be a sound basis for efficient image-search.

PD Posterior Distributions are generated, rather than just single estimates, facilitating sequential reasoning for
image sequence analysis, and potentially across sensory modalities.

BM Background Modelling: in a valid Bayesian analysis, image observations Z must be regarded as fixed,
not as a function Z(X) of a hypothesis X . For example, a sum-squared difference measure violates this
principle by considering only the portion of an image directly under a given template T (x). In contrast,
in a Bayesian approach, evidence about where the object is not must be taken into account, and that
requires a probabilistic model of the image background.

SI Statistical Independence of observations must be understood if constructed observation likelihoods are to
be valid.

IB FL MS PD BM SI Comments
(Burt, 1983) � � multi-scale pyramid
(Witkin et al., 1987; Scharstein and
Szeliski, 1998)

� � scale-space matching

(Grenander et al., 1991; Ripley,
1992)

� � � random diffeomorphisms

(Viola and Wells, 1993) � � mutual information
(Cootes et al., 1995) � � � multi-scale active contours
(Black and Yacoob, 1995), (Bas-
cle and Deriche, 1995), (Hager and
Toyama, 1996)

� � affine flow/warp

(Isard and Blake, 1996) � � random, time-varying active con-
tours

(Olshausen and Field, 1996; Bell
and Sejnowski, 1997)

� � � independent components (ICA)

(Geman and Jedynak, 1996) � � � response learning

Table 1: Precursors to Bayesian Localisation.

2 Bayesian framework

2.1 Image observations

Image observations can be based on edges or on intensities (and a combination of the two can be particularly
effective (Bascle and Deriche, 1995)). Edges are attractive because of their superior invariance to variations
in illumination and other perturbations, but true Bayesian inference (3) with edges is not feasible. This is
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because, given a set Z of all edges in an image, there is no known construction for the observation density
p(ZjX) that is probabilistically consistent. One feasible approach allows Z to be a function of X , so that
Z(X) consists solely of those edges found close to the outline of the object, in configuration X . Then a
likelihood L(X) = p(Z(X)jX) can be constructed (Isard and Blake, 1998), but cannot be used for true
Bayesian inference as that demands that the observations Z must be fixed, not a function of X . The alternative
approach followed here avoids the problem encountered with edges by using a fixed set of intensities covering
the entire image. turns out that Bayesian localisation subsumes the need for explicit edge features, because its
probabilistic model of intensity naturally captures foreground/background transitions.

2.2 Sum-squared difference and cross-correlation

One approach to interpreting image intensities probabilistically is to make the very special assumption that
image distortions are due to additive white noise. Then, a likelihood

L(X) = exp��(X) (4)

can be defined (Szeliski, 1990) in terms of a sum-squared difference (SSD) function �(X):

�(X) =

Z
x2S

w(x) (T (x)� I(gX (x)))2 ; (5)

where the weighting w(x) depends on the noise variance. It is worth noting that a likelihood such as (4)
is generally multi-modal, having many maxima. Ingenious algorithms (Witkin et al., 1987; Scharstein and
Szeliski, 1998) have been needed to find maximum likelihood estimates. Multi-modality is a feature of image
likelihood functions generally, whether based on edges or intensities, and is the reason for needing random
sampling methods later in this paper.

The likelihood (4) has been used successfully in surface reconstruction (Szeliski, 1990) but is not appropri-
ate for image intensity modelling, for two reasons. The first is that the assumption of additive, white noise is
not plausible. It implies statistical independence of adjacent pixels. In practice however, the sources of inten-
sity variation are illumination changes and intrinsic variability between objects of one class. Such variations
are spatially correlated (Belhumeur and Kriegman, 1998). If a fine-scale independence assumption is made
nonetheless, the resulting likelihood function L(X) can have grossly exaggerated variations (Ripley, 1992),
even as great as several hundred orders of magnitude, for minor perturbations of X .

The second reason is that the SSD-based likelihood (5) L(X) depends on the image intensities over a do-
main gX(S) that varies withX . This means, effectively, that the observation likelihood isL(X) = p(Z(X)jX),
depending on observations Z(X) which are not fixed. This was precisely the problem with edge-based observa-
tions which we set out to put right! The problem can be rectified by insisting that observations Z are computed
as some fixed function of an image I(x); x 2 D, where D is a fixed domain, irrespective of X . The domain D
will then be the union of a foreground region gX(S) \D, and a background region DnfgX (S)g. Any consis-
tently constructed likelihood p(ZjX) must therefore depend both on the foreground and on the statistics of the
background. The intuition behind this is that the image contains statistical information both about where the
object is and where it is not. A complete Bayesian theory must take account of both sources of information.
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2.3 Filter bank

If assuming independence of adjacent pixels is unreasonable, then some alternative representation of the image
I is needed whose elements are either mutually independent or have known statistical dependence. We have
opted to seek a set Z = (z1; : : : ; zK) of observations, in the form of a bank

zk =

Z
Sk

Wk(x)I(x)dx (6)

of filters Wk, with supports Sk arranged on a regular grid, as in figure 1. The task now is to find a filter bank

Figure 1: The world through a filter bank. A bank Z = (z1; : : : ; zK) is illustrated here with circular supports
S1; : : : ; SK arranged on a regular grid, so that the world is viewed, in effect, through a sieve. Supports are labelled
foreground (inside the black hypothesised outline), background or mixed, according to the hypothesised X — left: ap-
proximately correct (X = X0); right: X out in the clutter.

fWkg whose outputs (conditioned on object configuration X) are mutually independent, at least approximately,
so that a joint conditional density for the bank of outputs — the image observation likelihood function — can
be constructed as a product:

p(ZjX) =
KY
k=1

p(zkjX): (7)

Single filter likelihoods p(zkjX) are learned directly from training images (Geman and Jedynak, 1996) and
details are given later. For simplicity and computational efficiency (Mallat, 1989; Burt, 1983; Shirai and
Nishimoto, 1985), we restrict the fixed bank to contain filter functions

Wk(x) =W (x+ uk) (8)

that are simply copies of a standard filter W (x), translated over some regular grid defined by the displacement
vectors fukg.
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2.4 Factored sampling

For the multi-modal distributions that arise with image observation likelihoods, Bayes’ formula (3) cannot be
computed directly but Monte-Carlo simulation is possible. In factored sampling (Grenander et al., 1991), ran-
dom variates are generated from a distribution that approximates the posterior p(XjZ). A weighted “particle-
set” f(s(1); �1); : : : ; (s(N); �N )g, of size N , is generated from the prior density p0(X) and each particle s(i)

is associated with a likelihood weight �i = f(si) where f(X) = p(ZjX). Then, an index i 2 f1; : : : ; Ng
is sampled with replacement, with a probability proportional to �i; the associated si is effectively drawn from
a distribution that converges (weakly) to the posterior, as N ! 1. It will prove useful later to express the
sampling scheme graphically, as a “particle diagram”

p0
N
- 

� f
- 

�

N
- : (9)

It is interpreted as follows: the first arrow denotes drawing N particles from a known density p0, with equal
weights �i = 1=N . (Particle sets are represented by open circles.) The � f operation denotes likelihood
weighting of a particle set:

�i ! f(s(i))�i; i = 1; : : : ; N:

The final step denotes sampling with replacement, as described above, repeated N times, to form a new set of
size N in which each particle is given a unit weight; each particle is therefore drawn approximately from the
posterior.

Where the likelihood f is a very narrow function in configuration space, sampling can become inefficient,
requiring large N in order to give reasonable estimates of the posterior. In the paper (section 8) it is shown
how this can be mitigated by “layered sampling” in which broader likelihood functions are used in an advisory
capacity to “focus” the particle set down, in stages. In the vision context, layered sampling is a vehicle for
implementing multi-scale processing.

3 Probabilistic modelling of observations

The observation (ie output value) z from an individual filter is generated by integration over a support-set S
such as the circular one in figure 2, which is generally composed of both a background component B(X), and
a foreground component F (X):

zjX =

Z
B(X)

W (x)I(x) dx

| {z }
MAIN NOISE SOURCE

+

Z
F (X)

W (x)I(x) dx: (10)

The main source of variation in zjX is expected to come from the background which is assumed to be a sample
from some general class of scenes. In contrast, the foreground relates to a given object, relatively precisely
known, though still subject to some variability. This means that there should be a steady reduction in the
variance of the distribution of zjX as X changes from values in which the circular support is entirely over
foreground, via intermediate locations overlapping both foreground and background, and finally to values in
which it is entirely over background. This is supported by experiments in which density functions for z which
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Object configuration

B(X)

F(X)

X

Figure 2: The support of a mask. A circular support set S is illustrated here, split into subsets F (X) from the foreground
and B(X) from the background.

have been learned from images, both from background regions and also from foreground regions (figure 3).
The filter used in the experiment is a Gaussian

Figure 3: Learned observation densities for a Gaussian filter. Densities p(z) are exhibited both for foreground and
background, in the case that W (x) is Gaussian, with support radius r = 20 pixels. Units of z are intensity, scaled so that
intensities in the original image lie in the range 0; 1.

G�(x) =
1

�2
exp�

jxj2

2�2
(11)

in a circular support of radius r (= 3�).
The role of p(zjX) in Bayesian localisation is as a likelihood function for X , associated with a particular

observation z, as illustrated in figure 4. Note that, although X is generally multidimensional, in the diagram it
is depicted as a one-dimensional variable, for the sake of clarity. The entire family of idealised densities can
be represented in (z;X)-space as shown in the figure. Then, to construct the likelihood functions, the z-value
is considered to be fixed and X allowed to vary. This is illustrated in figure 4 by considering slices of constant
z. For example, z = 2 in the figure depicts a relative high value which, in the example, is more likely to be
associated with a filter-support lying predominantly over the foreground. The resulting likelihood is peaked
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Figure 4: Observation likelihood. The density p(zjX) is formally a function of z with X as a parameter, and is
illustrated for foreground and background cases. The whole family of such one-dimensional densities, indexed by the
continuous variableX , are assembled to synthesise p(zjX), as shown. Now p(zjX) is “sliced” in the orthogonal direction,
to generate likelihoods (functions of X for fixed z). In the examples, an observation z = 2 biases X towards a foreground
value, whereas z = �1 biases towards background.

around a value of X corresponding to predominant foreground support. Conversely, for z = �1, the support is
more likely to be predominantly over the background and the mode of the likelihood shifts towards background
values of X . 3

Likelihood functions from several observations zk should “fuse” when they are combined (7), to form
a joint likelihood that is more acutely tuned (figure 5) than the likelihood for any individual zk. Note the
importance of the zk from “mixed” supports, lying partly on the background and partly on the foreground. It
might be tempting to regard them as contaminated and discard them whereas, in fact, they should be especially
informative, responding selectively to the boundary of the object — see figure 1.

4 Filter response-learning

If it were not for mixed supports, learning would be relatively straightforward. Over the background, for
instance, it would be sufficient just to evaluate the outputs z (6) of the circular filter repeatedly, at assorted

3Note that “slicing” is purely an analytical tool to illustrate the way observation likelihoods exist implicitly within a probabilistic
model for filter response. Slicing does not actually form part of any algorithm proposed here.
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Figure 5: “Hyperacuity” from pooled observations. Likelihoods from independent observations combine multiplica-
tively, to give a joint likelihood narrower than any of the individual constituents.

locations over some training image, and fit a probability distribution pB(z). However, over a mixed support,
only a part of the circle lies over the background. If this part is approximated as a segment of a circle (figure
6), and provided each filter functional Wk(x) is isotropic (or steerable (Perona, 1992)), then the background

approx
B(X)

F(X)

B(X)

F(X)

ρ2r

2r

object

object outline

Figure 6: Approximating foreground/background supports Assuming that the object’s bounding contour is suffi-
ciently smooth (on the scale r of the radius of the filter support) the boundary between foreground and background can be
approximated as a straight line. The support therefore divides into segments with offsets 2r� and 2r(1��) for background
and foreground respectively.

distribution can be parameterised by a single offset parameter � (at a given scale r). This parameter is defined
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for 0 � � � 1, as in the figure so that: when � = 1 the filter support is entirely over the background; when
� = 0 it is entirely over the foreground; and for 0 < � < 1 it straddles the object boundary.

Training examples for background learning must be constructed over circular segments with offsets through-
out the range 0 � � � 1, to learn background distributions pBk (zj�). (Clearly, in practice, only a finite number
of these can be learned, leaving the continuum of � to be filled in by interpolation.) To consider a hypoth-
esised configuration X , the Bayesian localisation algorithm needs to evaluate, for each k, an offset function
�k(X) and a likelihood pk(zj�k(X)). The likelihood function consists of a sum of background and foreground
components, and is therefore constructed as a (numerically approximated) convolution

pk(zj�) = pBk (zj�) � p
F
k (zj�) (12)

of learned background and foreground density functions.

5 Learning the background likelihood

Statistical independence of image features is an issue that has been studied elsewhere, in the context of neural
coding (Field, 1987): if neural codes are efficient in the sense of avoiding redundancy, their components can be
expected to be nearly statistically independent. It is also known that independent components of natural scenes
tend to have “sparse” or “hyper-kurtotic” distributions — ones with extended tails compared with those of a
normal distribution (Bell and Sejnowski, 1997).

5.1 Experiments with response correlation

Experiments on background correlation are done here using statistics collected from each of the four scenes
in figure 7. Our experiments are similar to those done by Zhu and Mumford (1997) in which they showed the
background distribution is remarkably consistent across scenes, for a rG filter. Here we look at the div of that
filter output, which should therefore similarly show a consistent distribution, and the small-scale experiments
done here support that. A necessary condition for independence is freedom from correlation, so autocorrelation
was estimated by random sampling of pairs of supports, separated by a varying displacement. This was done for
two choices of filter function W (x): Gaussian G(x) and Laplacian of Gaussian r2G(x), and typical results
are shown in figure 8. At a displacement such as r (= 3�), corresponding to a typical separation between
filters, the G(x) filter shows correlation and hence there cannot be independence. On the other hand r2G(x)
is uncorrelated at a displacement of r. Further experiments, looking at the entire joint distribution for responses
zk; zl of two filters with variable spatial separation, support statistical independence, as figure 9 shows.

The independence is obtained at the cost of throwing away information about mean response and the 1st
moment, though this is likely to be beneficial in conferring some invariance to illumination variations. These
experiments were for complete, circular supports. With part-segments of a circle (� < 1), statistical inde-
pendence of r2G(x) responses deteriorates. Experiments like the ones in figure 8 show correlation lengths
increasing for � < 1, with � = 1

4 the worst case. This will mean greater statistical dependence between mixed
supports, and it is not clear how this could be improved; but note at least that typically it is a minority of filter
supports that are mixed.
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Figure 7: Background learning: training scenes used in experiments.

Fitting the background distribution

A further benefit of the r2G(x) filter is that the learned background distributions turn out to be far more
constant across scenes(and this is known to be true also for rG filters (Zhu and Mumford, 1997)) than for a
plainG(x) filter. Background distributions were learned by repeated sampling of zk (6) for randomly positioned
supports, then histogramming and smoothing to estimate pB(z). The results for complete circular supports
(� = 1), shown in figure 10, show sufficient consistency to indicate that some fixed parametric form should
be sufficient to represent the densities. The learned responses turn out not to be normally distributed, but have
a hyper-kurtotic distribution, that is one with greater kurtosis than a normal distribution, and this is clearly
visible in the extended tails in figure 10. Hyper-kurtotic distributions are known to emerge in independent
components of images (Bell and Sejnowski, 1997), and are often found to be well modelled by a single-
exponential distribution4

pB(z) / exp�jzj=�: (13)

The distribution fits the experimental data quite well (figure 11). In that case, a global background likelihood

4We refrain from the commonly used term “Laplace” distribution here, to avoid the potential confusion with the Laplacian operator
inr2G.
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Figure 8: Autocorrelation of filter output. Results are for the first (hand) image from figure 7, at two sizes of spatial
scale r. The Gaussian filter G(x) shows substantial long-range correlation whereas, for r 2G(x) correlation falls to zero
for non-overlapping supports.

∆  

0 z∆

p(   z)

r=10

∆  

0 z∆

p(   z)

r=10

displacement � = 5 pixels displacement � = 20 pixels

Figure 9: Independence of filter output. Two filters displaced � apart have outputs z1; z2, and the distribution of
the difference �z = z1 � z2 is plotted here. The dashed curve shows a reference distribution for large �. In the case
� = 5 pixels that correlation is high (see figure 8) z1; z2 are clearly not independent — the distribution for �z does not
match the reference distribution. However with � = 20 pixels, for which z 1; z2 are uncorrelated, they are shown here also
to be approximately independent.

of the form (7), is a product of exponentials of filter responses, just the scene model derived by Zhu et al. via
maximum entropy (Zhu et al., 1998, eq. (21)).

For � < 1 (circle segments), the single-exponential distribution does not fit so well, with � = 1
4 again being

the worst case. [This is to be expected, given that r2G does not sum to 0 over an arbitrary segment of a circle,
except for the semi-circle � = 1

2 . This implies that the distribution mean will not be zero, and hence cannot
have single-exponential form.]

Since W = r2G sums to 0, the means of densities pF and pB for foreground and background will also
coincide at 0, as in figure 12. Given this loss of the information associated with the means of pB and pF ,
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Bp(z   )

0 z B

Bp(z   )

0

Gaussian G(x) Laplacian of Gaussian r2G(x)

Figure 10: Learned background distributions. Learned densities pB(z) are shown here for each of the four scenes in
figure 7 at scale r = 20: they are highly variable for the G(x) filter, but rather consistent for r 2G(x).

 z

p  (z)
B

 z

p  (z)
B

Figure 11: Exponential model for background distributions. Learned densities pB(z) for the first and last of the 4
scenes in figure 7, at scale r = 20 with � = 1, are fitted here (by MLE) to an exponential distribution, which captures the
elongation of the tails.

discriminability between foreground and background is reduced, the price paid for improved illumination-
invariance. However, the foreground model can be extended in certain ways to improve discriminability again.
One way is “foreground subdivision” as in section 6; another uses intensity templates (Sullivan and Blake,
2000).

z

p(z|X)

foreground

background

Figure 12: Foreground and background distributions when
R
W (x)dx = 0, for support radius r = 20 pixels. The

means of the foreground and background distributions now coincide, cf. figure 3.
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5.2 Optimal filter bank grid

At a given spatial scale, the maximum information about an image can be collected by packing filter supports
Sk as densely as possible, within the constraint that filter outputs zk must be uncorrelated. For filtersWk that are
isotropic, correlation depends simply on the displacement between pairs of filters. A useful measure is that the
correlation function (figure 8) crosses 0 at a displacement of around r (= 3�). The most effective packing of
filters, for the given level of correlation, will be the one that maximises the packing density for a given minimum
displacement between filter centres. This is well-known to be a hexagonal tesselation, whose packing density
is approximately 50% greater than square packing. For the r2G filter, the filter support is circular5 with radius
approximately r (= 3�) which is also the displacement for (approximately) zero correlation. Hence supports
in the hexagonally tesselated optimal filter bank overlap substantially as in figure 13.

Figure 13: Optimal tesselation of filter supports. Maximum density ofr2G filters, while avoiding correlation between
filter pairs, is achieved by a hexagonal tesselation, as shown, with substantial overlap (support radius r = 40 pixels
illustrated).

6 Learning the foreground likelihood

Learning distributions for foreground responses is similar to the background case. As before, pF (zj�) is learned
for some finite set of �-values, and interpolated for � 2 [0; 1]. There are some important differences however.

5Of course, the filter has theoretically unbounded support, but we take the point at which filter amplitude falls to around 10% of its
maximum value.
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6.1 Deformations and pooling

Three-dimensional transformations and deformations of the foreground object must be taken into account. Tab-
ulating pF not only against � but also against transformation parameters is computationally infeasible. Varia-
tions that cannot be modelled parametrically can nonetheless be pooled into the general variability represented
by pF (zj�). This implies that pF (zj�) should be learned not simply from one image, but from a training set of
images containing a succession of typical transformations of the object.

6.2 Outline constraint

The distribution pB(zj�) was learned from segments dropped down at random, anywhere on the background.
Over the foreground, in the case that � = 0, pF (zj�) is similarly learned from a circular support, dropped now
at any location wholly inside the training object. However, whenever � > 0, the support F (X) must touch the
object outline; therefore, for 0 < � < 1, pF (zj�) has to be learned entirely from segments touching the outline.

6.3 Foreground subdivision

For � = 0, it has so far been proposed that pF (zj�) be learned by pooling responses throughout the object
interior. Pooling in this way discards information contained in the gross spatial arrangement of the grey-level
pattern. Sometimes this provides adequate selectivity for the observation likelihood, particularly when the
object outline is distinctive, such as the outline of a hand as in figure 1. The outline of a face, though, is less
distinctive. In the extreme case of a circular face, and using isotropic filters, rotating the face would not produce
any change in the pooled response statistics. In that case, the observation likelihood would carry no information
about (2D) orientation. One approach to this problem is to include some anisotropic filters in the filter bank,
which would certainly address the rotational indeterminacy.

An alternative approach which also enhances selectivity generally, is to subdivide the interior F of the
object as F = F0 [ : : : [ FNF

, as in figure 14, and construct individual distributions pFi(zj� = 0) for each
subregion Fi . A foreground distribution pFi(zj� = 0) applies to any filter support Sk that lies entirely within
F and whose centre is in Fi. The case i = 0 is a “catch-all” region, pooling the responses of any filter whose
centre is not in Fi for any i > 0 (the hexagons in figure 14). The choice of the number NF of sub-regions is of
course a trade-off between increasing, with NF , the specificity of the information that is learned while, at the
same time, requiring more data to learn adequate estimates of the pFi as the sub-regions Fi get smaller.

Sub-regions are defined with respect to a standard configuration, say X = 0, as in figure 14a. In a novel
configuration X 6= 0, encountered either in training or evaluation of the likelihood p(ZjX), suitably warped
forms of Fi must be defined (figure 14b)). This could be achieved by defining the configuration space X
as a space of two-dimensional warps gX , using thin plate splines for example (Bookstein, 1989). A more
economical but more approximate approach is adopted here, representing the outline contour as a parametric
spline curve (Bartels et al., 1987), and the configuration-space X is modelled as a sub-space of the spline
space. Then the warp of the interior of the object is approximated as an affine transform by projecting the
configuration X onto a space of planar-affine transformations (Blake and Isard, 1998, ch 6). The fact that this
affine transformation warps the interior only approximately does not imply that errors are introduced into the
Bayesian localisation procedure. Rather, the variability due to approximating the warp is simply pooled during
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(a) (b)

Figure 14: Foreground subregions. The object interior F is subdivided (a) as F = F0 [ F1 [ : : : [ FNF where
sub-regions F1; : : : ;FNF here are hexagons and F0 is the remaining part of F . In a novel view (b), sub-regions must be
mapped onto the new images, done here by approximating the warp of the interior as a planar-affine map.

learning into the distributions pFi . The resulting model then loses some specificity but is still “correct” in that
the variability is fairly represented by probabilistic pooling.

6.4 Statistical independence

Known behaviour for independence of natural scenes, which applied well to background modelling, cannot nec-
essarily be expected to apply for foreground models, given that the foreground is far less variable. Nonetheless,
repeating the autocorrelation experiments now for the foreground has produced evidence of good independence
for r2G filters, as in figure 15.

6.5 Representing the distribution

Whereas filter response z over (highly variable) background texture assumed the characteristic kurtotic form,
the foreground is far less variable and does not have extended tails (figure 12). Hence the exponential distri-
bution is unsuitable. A normal distribution might be more appropriate but the safest approach is to continue to
represent pF in a more general fashion, as an interpolated histogram.

6.6 Intensity offset model

Recently, we have developed a more effective form of foreground model which incorporates an intensity offset.
Briefly it works as follows, but see (Sullivan and Blake, 2000) for details of the approach. Over the foreground
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Figure 15: Foreground autocorrelation for the r2G filter, over two different foreground objects: a hand (left) and
a face (right). In both cases, correlation falls to zero at a displacement of around r or 3�, similarly to correlation of
background texture.

F(X), the intensity I(x) is modelled as having a mean �IX(x) generated as a warp

�IX(x) = �I(TX(x))

of a learned intensity template �I(x). This then leaves only the difference

�IX(x) = I(x)� �I(TX(x)); x 2 F(X);

as observed by the filter bank fWkg, to be modelled statistically. More of the variation in the intensity pattern
I(x); x 2 F(X) is accounted for deterministically, leaving a tighter distribution for the random component
of the foreground model.

Inclusion of the intensity offset, in this way, fulfils a similar objective to the foreground subdivision of
section 6, in using more of the information in the spatial intensity pattern of the object. It turns out (Sullivan
and Blake, 2000) to have an additional advantage: that the template model can be extended to take some account
of lighting variations deterministically, rather than leaving lighting changes to be modelled entirely statistically.

7 Exercising the learned observation likelihood

Having established, in previous sections, that reasonable densities pk(zjr) for individual supports can be learned
from background and foreground densities, it is now possible to exercise the full joint likelihood function
p(ZjX). This is constructed (7) as a product, in which the offset � for each support segment is obtained from
its offset function �k(X):

p(ZjX) =
KY
k=1

pk(zkj�k(X)): (14)

Evaluation of the offset function requires a geometrical calculation of the size of the circle-segment that ap-
proximates the intersection of the object (at configuration X) with the kth support. It is interesting to note
that, although Bayesian analysis requires that Z should consist of the entire set of filters zk in figure 1, some
economies can legitimately be made. Given a sample X1; : : : ;XN of object hypotheses, if some filter support
Sk lies always in the background for all the Xn, the corresponding term can be factored out of (14). For a
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truly parallel, pyramid architecture this may be no real advantage. If image processing is serial a “sampling
rehearsal” can tag just those zk whose likelihoods do not factor out; other zk need not be computed. The
“factoring out” phenomenon also makes another interesting point. The filters that actually contribute to global
likelihood variations are those near the boundary of at least some hypothesised configuration X; so despite
being intensity-based, it transpires that Bayesian localisation does in fact emphasise edge information.

The learned observation likelihood is exercised here in two ways. First, the likelihood function is explored
systematically, with respect to translation, rotation etc., and at various spatial scales. Secondly, the likelihood
function is applied to randomly generate samples, to sweep out posterior distributions for pose, again at several
scales.

7.1 Systematic variations in observation likelihood

First, for the hand scene of figure 1, p(ZjX) — the joint likelihood composed of a product of likelihoods
p(zkjX) for individual filters, is exercised systematically. This is done as a check that the likelihood does
register a peak at the true object position, and has reasonable variations around the peak. In these demon-
strations, X is varied over a configuration space of Euclidean similarities; results are displayed in figure 16.
The joint likelihood fuses information from individual supports effectively, with a maximal value, as expected,

0 50 Translation
  (pixels)

−50

Likelihood r=20 pixels

0 Rotation
(degrees)

−90 90

Likelihood r=20 pixels

0.5 1 1.5

Scaling factor

Likelihood r=20 pixels

Translation Rotation Scaling

Figure 16: Exercising the joint likelihood. The joint observation likelihood p(ZjX) is exercised here as X ranges
over coordinate axes in the space of Euclidean similarities. Note that the peak in each case is approximately at the origin
(X = X0). (Support radius is r = 20 pixels.)

near the true solution X0. Figure 17 demonstrates the effect of changing the filter scale r. As expected, the
likelihood function is more broadly tuned at coarser scales, appearing to have a width of about 2r, or less due
to hyperacuity effects as in figure 5. As a final check, it is interesting to consider the likelihood ratio for two
configurations, one correctly positioned over the target, and one way out over background as in figure 1. In
such cases, treating pixels as independent typically produces ridiculously large likelihood ratios. Even using
Gaussian masks (r = 20), which we know are not independent, gives a likelihood ratio in this case of 1 : 1055

— still very large. However, this falls considerably with r2G masks, as expected given the independence of
their output over foreground and background, to a more plausible 1 : 104

To summarise, the learned observation likelihood for r2G masks has been exercised here, systematically,
and found to have reasonable properties. The next task is to use it to compute approximations to the posterior
p(XjZ), by means of the factored sampling scheme of section 2.4.
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Figure 17: Joint likelihood at various scales. The observation likelihood p(ZjX) shown for translation, at various
scales. Again, modes are approximately unbiased, and the width of the likelihood peak increases with r.

7.2 Sampling from the posterior

To locate a hand against a cluttered background, by Bayesian localisation let us assume first that its orientation
is known but that the prior p(X) for translation is broad (has high variance). Samples from the posterior, at
several scales, are shown in figure 18. For a given scale, the broad prior is focused down to a narrow posterior
distribution which, as earlier in figure 17, is narrower at finer scales. It is not clear from figure 18 that coarse
scales actually have a useful role — the finest scale, after all, gives the most precise information. However, if
the sampling process is “pressed” harder, by expanding the prior without increasing the size N of the particle-
set, the fine scale breaks down, as figure 19 shows, while at the two coarser scales, sampling from the posterior
continues to operate correctly. That suggests a role for coarser scales in guiding or constraining finer ones, if
only a Bayesian sampling mechanism can be found to do it, and that is the subject of section 8.

8 Layered sampling

In section 7.2, the problem of “overloading” was demonstrated, that occurs when image observations are made
at a fine spatial scale. It results from the observation likelihood f(X) having a support that is narrow compared
with the support of the prior p0(X). A continuation algorithm is used to reduce computational complexity by
introducing a sequence of likelihoods fn whose supports are intermediate between those of p0(X) and f(X),
and which reduce progressively in size. One form of this idea is “annealed importance sampling” (Neal, 2000),
in which f(X) is replaced by f(X)� ; 0 < � < 1 in order to broaden likelihood function. It is known to reduce
the number of particles needed for estimation (to a given accuracy) by importance sampling, from N to logN .

Layered sampling is an alternative form of continuation principle in which the intermediate likelihoods
are obtained by making image measurements at a variety of spatial scales. Filter responses at several scales
r = r1; r2; : : : are used in coarse-to-fine sequence. so background distributions

pB(zj�; r); 0 � � � 1; r = r1; r2; : : :

need to be learned at each scale, and similarly for foreground distributions.
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prior posterior: r = 40 pixels

posterior: r = 20 pixels posterior: r = 10 pixels

Figure 18: Random samples from the posterior. Factored sampling from the posterior density p(X jZ), in which the
prior p(X) is a broad distribution of Euclidean similarities (planar rigid motion plus size-scaling). At each scale r, the
posterior mean E [X jZr] (white contour) is close to the true configurationX0 and the variance of the distribution p(X jZr)
decreases with r, as expected. Particle set size is N = 80 per layer. (For clarity, only particles from the posterior
accounting for at least 1% of likelihood over sample-set are shown.)

8.1 Importance reweighting

Layered sampling uses what we term “importance reweighting, in which the particles representing some prior
distribution p0(X) are replicated and re-weighted. Particles are replicated to a degree that is proportional to
the value of some weighting function g(X), as in figure 20. Following the re-distribution, likelihood weights
are adjusted to compensate, so that the particle-set continues to represent the same underlying prior p0. The
re-weighting operation is denoted by a � operator with a weighting function. An example of its use follows:

p0
N
- 

� g

N
- 

� f
- 

�

N
- :
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prior posterior: r = 40 pixels

posterior: r = 20 pixels posterior: r = 10 pixels

Figure 19: A broader prior “overloads” factored sampling Now the demonstration of figure 18 is repeated, but
with a prior 1.5 times as broad, causing sampling at the finest scale to break down (observe the large bias in the mean
configurations at scale r = 10; 20 pixels. (Again, N = 80.)

This is factored sampling (9) with an extra, intermediate, reweighting stage. In terms of particle-sets, the
reweighting operation � g is defined as follows

f(s(i); �i); i = 1; : : : ; Ng ! f(s(i(j)); 1=g(s(i(j)))); j = 1; : : : ; Ng

where each i(j) is sampled with replacement from i = 1; : : : ; N with probability proportional to �ig(s(i)).
A useful property of the resampling operation � g is that it is an asymptotic identity: as N ! 1, the

difference between the distributions of the two random variables generated by

p0
N
- 

�

1
-  and by p0

N
- 

� g

N
- 

�

1
- 

converges weakly to 0.
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0p  (X)

~ g  

0p  (X)

Figure 20: Importance reweighting. A uniform prior p0(X), represented as a particle-set (top), is resampled via an
importance function g to give a new, re-weighted particle-set representation of p 0. (The illustration here is for a one-
dimensional distribution, though practically X is multidimensional.)

Resampling with the � g operation does not, on its own, deal with the problem of a narrow likelihood
function. Although it does concentrate sampling to a narrower region of configuration space, the gaps between
particles are as great as ever (figure 21). Gaps can be filled, however, by adding a further random variable

g(X)  
~ g  

f(X)  

X
* p  

p  

* p  

p  0

1

0

10p  

Figure 21: Resampling followed by convolution. This simplified example illustrates that importance reweighting on
its own cannot repopulate the sparsely sampled support of the likelihood f . Repopulation can however be achieved by
adding a random increment, corresponding to convolving the prior p 0 with p1, the density of the random step.

with density p1, to each particle. This has the effect of diffusing apart identical copies of particles generated in
the resampling step. Of course, the combined operation is no longer an asymptotic identity — particles at the
output of

p0
N
- 

� g

N
- 

� p1
- 

�

1
- 

are distributed asymptotically according to the density p0 � p1.
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8.2 The layered sampling algorithm

Layered sampling is applicable when importance resampling functions f1; : : : ; fM are available, in which
fM = f is the true likelihood, and each fm�1 is a coarse approximation to fm. In addition, the prior p0
must be decomposable as a series of convolutions

p0 = p00 � p
0
1 : : : � p

0
M�1 (15)

and this corresponds to expressing X a priori as a sum of random variables. Functional forms for the densities
p0m need not necessarily be known, provided only that a random sample generator can be constructed for each.
For example, in processing motion sequences using the CONDENSATION algorithm (Isard and Blake, 1996),
p00 could be represented as a set of particles from the previous time t � 1, and pd = p01 : : : � p

0
M�1 is some

decomposition of a normal distribution pd(X(t)jX(t� 1)) for the likely displacement over one time-step, into
normally distributed components. With this decomposition of the prior, the sampling process (9) on page 6 can
be replaced by a sequence of layers:

p00 N
- 

� f1

N
- 

� p01
- 

: : :

� fM�1

N
- 

� p0M�1
- 

� fM
- 

�

N
- :

(16)

Each layer includes an importance resampling step, with the observation likelihood fi at the ith scale as the
resampling function, until theM th and final layer, at which the fine-scale fM acts multiplicatively on likelihood
weights, in the usual way.

The asymptotic correctness of layered sampling can be demonstrated by manipulating the sampling dia-
gram. Using the asymptotic identity property of �, (16) can be rewritten, deleting resampling links, to give

p00 N
- 

� p01
- 

: : :

� p0M�1
- 

� fM
- 

�

N
- :
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and now the p0m convolutions can be composed to give

p00 � p
0
1 � : : : � p

0
M�1 N

- 
� fM
- 

�

N
- :

which, from (15), and since fM = f , reduces to the original factored sampling process (9).

8.3 Variance reduction

A remaining problem is how to choose the likelihood functions and the decomposition of pd in such a way as
to minimise the variance of the particle set generated in the final layer. These are complex problems in general,
but some progress can be made by setting out the following special case.

1. The prior p00 is a rectangular distribution, with a support of volume a0 in configuration space.

2. Each likelihood function fm is idealised as a rectangular (uniform) distribution with a support of volume
am.

3. The support of each fm is a subset of the support of fm�1.

4. Each p0m is chosen in such a way that N particles are effectively uniformly distributed over the support
of fm, as depicted in figure 21. This can be done by matching the support of p0m�1 to the support of fm.

5. Variance minimisation is not well-posed for rectangular distributions fm, since their support is bounded.
Instead, we minimise the “failure rate” — the probability that the particle set in some layer is empty.

Under these assumptions it can be shown (see appendix) that the failure rate is minimised by choosing

am�1 = �am (17)

so that successive support volumes are in some fixed ratio �.
Three further useful results (derivations omitted) can be obtained using analysis of estimator variance for

importance sampling (Neal, 2000; Liu and Chen, 1995; Geweke, 1989).

� Using just a single layer (i.e. without layered sampling), the number N of particles required to achieve a
given failure rate is

N / a0=aM (18)

� With layered sampling, the failure rate is minimised by having approximately

M = log2(a0=aM ) (19)

layers. This means that � = 1=2 is the optimal ratio of support volumes.

� With the optimal number M of layers, the total number of particles required falls to

NM / log2(a0=aM ); (20)

a logarithmic speed-up compared with (18).
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9 Results

Layered sampling is applied here to the problem of multi-scale localisation. In all cases, a hexagonal tesselation
of filters was used with separations of 6� (sections 9.1, 9.2) or 3� (sections 9.3, 9.4). [Recall that the support
of the filters are truncated at r = 3�; filter sizes are specified as r-values in experiments below.] A constant
number N of particles was used in each layer; demonstrations with motion in section 9.4 were done with just a
single layer, though clearly these also would be expected to benefit from multiple layers.

9.1 Sampling across scales

In the Bayesian localisation application, the fm from the layered sampling algorithm correspond to observation
likelihoods from the coarsest scale m = 1 to the finest m = M . Operation of the algorithm is illustrated
here, in figure 22, for the hand-finding problem that caused the overloading of single-scale sampling earlier, in
section 7.2. The normally distributed prior p0 is split, as a sum of normal variables, into 3 factors

p0 = p00 � p
0
1 � p

0
2;

each factor to be used before scales r1; r2; r3 in the coarse-to-fine hierarchy of observations. Scales are
chosen to decrease geometrically, as implied by the fixed ratio rule (17) above. (This implication holds on the
assumption that observation likelihood functions scale linearly with filter radius r, and demonstrations tend to
support this, as in figure 17). The ith scale generates an observation likelihood function fi, where fi(X) =
p(ZijX). Note that the formal likelihood derives from observations only at the finest scale. Observations at
other scales are cast by layered sampling in an “advisory” role, their scope limited to importance sampling for
the next finer scale. This avoids any need for any formal assumption of statistical independence across scales
which may be hard to justify.

9.2 Occlusion

One of the attractions of intensity-based matching is its robustness to disturbances in the image data, and a
severe form of disturbance is presented by occlusion. Where occlusion is anticipated, this is addressed in the
Bayesian localisation framework simply by treating the occluder as part of the background, and evaluating the
appropriate observation-likelihood functions there. More challenging is occlusion that is not anticipated, as
in figure 23. The figure illustrates the power of the Bayesian sampling approach to deal with ambiguity. At
coarse scale, the part-occluded and blurred representation of shape leaves object-orientation quite ambiguous,
though translation is somewhat constrained. Finer scales contain fragments of curve at sufficient resolution to
register quite precisely with part of the object outline. Hence the rotational ambiguity is resolved. Even though
the posterior at the finest scale has very small variance, nonetheless, the facility to represent ambiguity in the
intermediate processes is what has allowed multi-scale information to be propagated effectively.

9.3 Pose variation

Bayesian localisation is capable of handling a configuration space X that incorporates varying 3D pose, as
the demonstration of figure 24 shows. The foreground distributions in this demonstration were learned using
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layer p00 of prior r1 = 40 pixels

layer p01 of prior r2 = 20 pixels

layer p02 of prior r3 = 10 pixels

Figure 22: Layered sampling across spatial scales: the demonstration of figure 19 is repeated, but now with layered
sampling, from coarse to fine scale. Note that the overload evident at finest scale in figure 19, is rectified here, with a
similar computational load (N = 80 particles per layer).
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layer p00 of prior r1 = 40 pixels

layer p01 of prior r2 = 20 pixels

layer p02 of prior r3 = 10 pixels

Figure 23: Layered sampling with occlusion: a demonstration like the one in figure 22 but now with the object suffering
unpredicted occlusion. Note that, at the coarsest scale, shape information is sufficiently distorted by occlusion, that object
orientation is quite ambiguous in the posterior. Finer scales resolve the ambiguity.
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Layer 1 (r = 40 pixels) Layer 3 (r = 10 pixels)

Figure 24: Pose variation: the prior is approximately uniformly distributed (on the white rectangle) over translations,
with normal distributions over pose and zoom. The first and last layers of the posterior from layered sampling with
r = 40; 20; 10 pixels are shown, for each of three poses of a face. (Means displayed in white; N = 250 particles per
layer, of which the 15 with highest likelihood are displayed in layer.)



Bayesian Localisation — IJCV 44(2), 111–135, 2001 29

foreground subdivision as discussed in section 6, with subregions of a diameter equal to that of the filter support.
In fact, in the coarsest layer, there is space within the face contour for only one subregion, but 7 subregions at
r = 20 and 33 at r = 10. Note the “rogue” face hypothesis appearing on the curtain at the left, which receives
a significant weight in layer 1, at the coarsest scale (a blurry hallucination), but does not survive at fine scale.

A further demonstration of face-tracking, free-running at about 1 frame/sec, is given at

http://www.robots.ox.ac.uk/˜vdg/movies/bayes-face.mpg.

In this case there are two layers with r = 40; 20 and N = 600 particles per layer, and a foreground intensity
model is used, as in (Sullivan and Blake, 2000).

9.4 Motion tracking

Motion tracking demonstrations in this section serve two purposes. First they test the Bayesian localisation
algorithm over many separate video frames. Second they underline the importance of Bayesian techniques for
sequential inference. The prior for object configuration in each frame is predicted from the posterior for the
previous frame, via a learned dynamical model (Blake et al., 1995; Baumberg and Hogg, 1995). The iterated
process of prediction and Bayesian localisation forms a particle filter (Gordon et al., 1993; Kitagawa, 1996;
Isard and Blake, 1996). A person walking across a room is tracked (figure 25) in the manner of Baumberg and

Figure 25: Deformable motion. A deformable contour model with 8 free parameters is used to track a walking person.
The image sequence contains over 150 image frames. (We used a single layer with r = 15 pixels andN = 1500 samples.)

Hogg’s tracking demonstration (1995), but without background subtraction. See also the movie version at

http://www.robots.ox.ac.uk/˜vdg/movies/bayes-walker.mpg.



Bayesian Localisation — IJCV 44(2), 111–135, 2001 30

Instead, distracting background clutter is dealt with by the learned foreground/background models embodied in
the observation likelihood. Consequently, the method not limited to backgrounds that are stationary, or moving
in some easily predictable fashion.

A note should be added here on computation time. The task (on-line, excluding learning) here consists
principally of image processing to obtain the zk, and of computation of likelihood (14), of which the offset
function pn(zkj�k(X)) is main burden. The image processing can be done using pyramid filter banks (Burt,
1983) that are available in hardware. The offset function (at scale r = 40) can be computed for approximately
N = 500 particles per time-step, at frame-rate. Bayesian localisation at video frame-rate is therefore quite
feasible, in principle.

10 Conclusions

The original elements of Bayesian localisation are: the development of filter-based likelihood functions for
matching with particular attention to statistical independence; learning of foreground and background distri-
butions, and distributions for “mixed” receptive fields; probabilistic multi-scale analysis by means of “layered
sampling”.

The approach has been tested on a variety of foregrounds and backgrounds. It is capable of planar ob-
ject localisation, even with unpredicted occlusion, and versatile enough to work with 3D pose changes, and
with image sequences of moving objects, including nonrigid ones. A number of issues are raised: the choice
of partition for the prior in layered sampling; the use of spatio-temporal filters and associated independence
arguments; temporal updating of the foreground distribution. These remain for future investigation.
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A Layered sampling and bounded variance

The result from section 8 about arranging the scales of successive likelihood functions in fixed ratio is derived
here. Making the assumptions 1–5 from section 8.3, the density of particles on entering the mth layer in (16) is
N=am�1, assumed uniformly distributed in configuration space. Then the proportion of these particles which
lies within the support of fm has mean

�m =
am
am�1

and is binomially distributed. The probability P (Fm) of “failure” at the mth layer is therefore

P (Fm) = (1� �m)
N

and the event F = F1 [ : : : [ FM of failure at any layer has probability

P (F ) = 1�
MY
i=1

�
1� (1� �m)

N
�
:

Now minimising P (F ) under the constraints that �i � 0 and the constraint (imposed using a Lagrange multi-
plier) that the product

MY
i=1

�i =
aM
a0

is a constant, gives a unique solution
�1 = �2 = : : : = �M ;

so that the ratios am=am�1 are all equal, as required.


