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Abstract arising, for example in image clutter or with multiple mod-

Maximisation of cr rrelation | mmonl q rinels’ sampling methods are needed [8], and random sampling
raximisation OT Cross-correiation 1S @ commonly US€d pring,, qq jias the development of Bayesian correlation here.
ciple for intensity-based object localization that gives a sin-

gle estimate of location. However, to facilitate Sequentiqlzekition to previous work Key elements of the work pre-
inference (eg over time or scale) and to allow the representagnted here are:

tion of ambiguity, it is desirable to represent an entire prob- |5 Intensity Basedbservations, not just edges.

ability distribution for object location. Although the cross- FL Foreground Learningn terms of probability distribu-
correlation itself (or some function of it) has sometimes been tions estimated from one or more training examples

treated as a probability distribution, this is not generallyjus i : )
MS Multiple Scalesearch is well known to be a sound basis

tifiable. - . .
Bayesian correlation achieves a consistent probabilis- Or efficient searching of images.

tic treatment by combining several developments. The firsPD Posterior Distributionsfor object location, rather than

is the interpretation of correlation matching functions in  just a single estimate, supports sequential reasoning for

probabilistic terms, as observation likelihoods. Second, Multi-scale and image-sequence analysis, and potentially

probability distributions of filter-bank responses are learned ~ &Ccross sensory modalities.

from training examples. Inescapably, response-learningBM Background Modellingin a valid Bayesian analysis,

also demands statistical modelling of background intensi- image observations must not be a functio# (X) of the

ties, and there are links here with image coding and Inde- hypothesisY. For example, sum-squared difference vio-

pendent Component Analysis. Lastly, multi-scale processing lates this principle by considering only the portion of an

is achieved, in a Bayesian context, by means of a new al- image directly under the templaf&x). A Bayesian ap-

gorithm,layered sampling for which asymptotic properties ~ proach must use evidence about where the objeubts

are derived. That requires a probabilistic model of the image back-
ground.

S| Statistical Independencef observations must be en-
sured if constructed observation likelihoods are to be
Object localization in an imagé(x) can be viewed as the valid. For instance, assuming independence across ad-
problem of recovering the waiy (x) that transported acer-  jacent pixels is unjustified, and leads to exaggerated vari-

tain templatel’(x) into the image. Here, the wagp is pa- ations in the likelihoogh(Z| X) for even minor perturba-
rameterised byX € X, whereX is a configuration space tions of X
for the warped template, for example, planar-affine space or There are three outstanding precursors to Bayesian cor-
some space of non-rigid deformations. Following the wargelation; one concerns random diffeomorphisms [8]; the
it is assumed that random imperfections are introduced as@cond is an algorithm [17] for registration by maximisa-
result of sensor-noise and unmodelled variations. tion of mutual information; third is localisation by fore-

“Analysis by synthesis” [14] then consists of the Bayesiaground/background learning [7]. Attributes of these and
construction of a posterior distribution fof. Given a prior  other important prior work are summarised in table 1, in
distribution po(X) for the configurationX, and an obser- terms of elements of Bayesian correlation as listed above.
vation likelihoodp(Z|X) whereZ = Z(I) is some finite-
dimensional representation of the imagehen the posterior
density forX is given by

p(X|Z) o po(X)p(Z|X). (1) A natural choice for the se¥ of image observations is a

In more straightforward, Gaussian cases, (1) can be coffter-pbank consisting of inner-product elemenig k =

puted in closed form. In the non-Gaussian cases commor]fly- .-, K applied to the imagé. Each filter-element has the
orm

*for a version of this paper with colour figures and a movie aiiggl5 k= /S Wi (X)I(X)dx’ (2)
k

1 Introduction

2 Probabilistic inference of shape
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IB|FL|MS|PD|BM |SI{Comments
Burt [5] X X multi-scale pyramid
Witkin et al.[18], Scharstein & Szeliski [16] X X scale-space matching
Grenandeet al. [8] X X | X random diffeomorphisms
Viola & Wells [17] X | x mutual information
Cooteset al.[6] X | x| % multi-scale active contours
Black & Yacoob [3], Bascle & Deriche [1], Hager & Toyama [9] X | x affine flow/warp
Isard & Blake [11] X X random active contours
Olshausen & Field [15], Bell & Sejnowski [2] X x | x |independent components (ICA)
Geman & Jedynak [7] X | x X response learning

Table 1:Precursors to Bayesian correlation.

computing an inner product of the image and the elemehearning We have argued tha{Z|X') contains both fore-
function Wy, over a finite supporf;. Element functions ground and background components. Tackling image-texture
may consist of copies of a single response-funcliofx), modelling head-on would be complex. An oblique approach
translated to the nodes of a regular grid, so that the world to learn filter-likelihood(z;|X) directly from training

is effectively being viewed through a sieve, as in figure limages, as [7] but, crucially, also tackling the inescapable is-
In the familiar case that the space of watpsconsists of sue ofmixedsupports (figure 1). This side-steps any need for
a complete model of foreground or background, modelling
themonly as they appear in the sieeéfigure 1. Then, pro-
vided also that théV;, can be chosen to give the necessary
statistical independence, the full observation likelihood can
be constructed as a product:

K
p(Z1X) = [] p(z] X). 3
k=1

Factored sampling For non-Gaussian problems, (1) can be
simulated by generating random variates from a distribution
that approximates the posterip(X|Z). In factored sam-

_ _ pling [8], a weighted particle-sef(s1, 1), ..., (sn,7TN)},
Figure 1: The world through a filter bank Z = (z1,...,2x),  ofsizeN, is generated from the prior densiy( X ) and each

with circular supportsSy, ..., Sk on a regular grid. Given some . - . . - ' ~ '
hypothesised¥ (thick hand-shaped outline), supports are labelle®rticles; is associated with a likelihood weight = f(s;)

foreground (green), background (blue) or mixed (yellowjlote: Where f(X) = p(Z|X). Then, anindex € {1,...,N}

example shows aiX that is far from the true hand configuration.) is sampled with replacement, with a probability proportional
to 7;; the associated; is effectively drawn from a distribu-

two-dimensional translations, the bank can be thought of &®n that converges (weakly) to the posteriors— oo. It

a discrete sampling of the cross-correlationlf with 1. will prove useful later to express the sampling scheme graph-

In that case, the response-functiéin(x) could well be a ically, as a “particle diagram”

translated copy of the object templdf&x), which would X ~

have the effect of tuning(X) to respond to object posi- N O L. O N O @)

tion. For the higher-dimensional warp-spacede.g. pla- |t is interpreted as follows: the first arrow denotes drawing

nar affine) that we want to deal with here, systematic samy particles from a known density,, with equal weights

pling of z(X), X € X is no longer feasible. Generalisingr, = 1/N. (Particle sets are represented by open circles.)

the filter bankZ therefore has to take a different tack. The’rhe X f operation denotes likelihood We|ght|ng ofa particle

two-dimensional grid layout can remain, but the responsegt: (s, ;) — (s;, f(si)m), i = 1,...,N. The final step

function W becomes something more general. The trangfenotes sampling with replacement, as described above, re-

lated copiedV, generate a set of linear functionals to enpeatedV times, to form a new set of siz& in which each

code (partially) an imagé, with the necessary statistical in- particle is given equal weight, and which is drawn approxi-

dependence, but no longer tuned to any particular object. Qfately from the posterior.

course, an important generalisation is that there may be more

than one type of response-function (eg for various scalesg, Probabilistic modelling of observations

each of which is replicated over the grid to form the compo-

nentsz;, of Z. The entire filter-bank scheme has the attracthe observation (ie output value)from an individual filter

tion that fixed, computationally efficient architectures can biss generated by integration over a support-Sgfigure 2)

used to compute, for instance wavelets [13], pyramids [5] and generally has both a background compo#idt) and

or biological “hypercolumn” hardware [10]. a foreground componet(X):
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Figure 2:The support of a filter is splitinto subset#’ (X ) — fore-
ground andB(X) — background. The boundary between subse|
is approximated as a line, $8(X) and F(X) are segments of a
circle with offset2rp and2r(1 — p) respectively.

z|X = W(x)Ig(x) dx+/ W (x)Ir(x)dx.
JB(X) F(X)

v

MAIN NOISE SOURCE

S . (5) Figure 3:Observation likelihood. The densityp(z|X) is formally
Then, considering the outpuj of the kth filter at run-time, 3 function of> with X as a parameter, and is illustrated for fore-

under a hypothesised configuratidfy the Bayesian corre- ground and background cases. Np(z|X) is “sliced” in the or-
lation algorithm needs to compare the measurgdgainst t_hogonal direction, to generate likelihoods — functionsXffor
the likelihood py (2| X). Likelihood py(z|.) represents a fixedz

sum of background and foreground components, and is theie—

fore constructed as a (numerically approximated) C°”"0'%?@Z?ﬂigtzigmfgfftz throuQTr?Utr;i?icr:n%%alﬁ e§s ;r'e
tion py. (2| X) = pB(2|X) * pF (2| X) of learned background B (zlp). (Inp o

and foreground density functions. sampled and interpolated.) Tbé(zk|pk(X)) should be in-

The main source of variability in| X is expected to come dependent so that a Jc_)mt likelihood can be con_struct_ed, ag-
from the background which is a sample from some cla rege_atlrlg all obser\_/atlpn& (3)' _In_dependence 'S an 1ssue
of scenes, assumed large and only generaly known. [T B8ORS Ok B EEE SO 8 R e
contrast, the foreground relates to a given object, relative endent Bcl:omponents of nyaturalpscenes are ﬁnown t'o have
precisely known, though still subject to some ambient- an

L X urtotic” or “sparse” distributions — ones with extended
class-yarlqblllty. Th'.s means that 'ghe_re S.hOUId be a stea dils compared with those of a normal distribution [2]. A
(r:i(:\l:]d:aosn f:zr;hSaYS(;??r?ivﬁfcr?hglsgirrlgﬂgnsﬁp(oisif ov necessary condition for independence is freedom from cor-
foreggr]oun d, via mixed foreground/background ?c?pure bacqéglation, so autocorrelation was estimated, for four different
ground. This is supported by experiments shown later. Di cenes (desk-top, rooms, tree), by random sampling of pairs

" ! of supports, with varying separation. This was done for two
{ely assermbled and sliced 1o give observation fikelihaodler FNCHONSIY (): GauSSIrti(x) (positive mear) and

vely ) give € . Taplacian of Gaussial2G/(x) (zero mean), wheré/(x) =
(figure 3). For example; = 2 in the figure depicts a rela- X2 i ) _
tively high value which, in the example, is more likely to bezz ©XP — 5., in a circular support of radius = 30, as in
associated with a filter-support lying mainly over the forefigure 4. As expected, th€(x) filter is correlated at a rea-
ground. The resulting likelihood is peaked around a value pf
X corresponding to predominant foreground support. Con
versely, forz = —1, the mode of the likelihood shifts towards

background values of .

correlation correlation

r=20

Gaussian
Gaussian

ement
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Laplacian

50 100
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It proves efficient to approximate the curve dividiAgfX) Figure 4: Autocorrelation of filter output. Results for the desk-

and B(X) as a straight line (figure 2). In that case, if eaciP Scene, at two spatial scalesThe Gaussian filte€(x) shows

filter functional W, (x) is isotropic the background distribu- fs“bSta”“a' long-range correlation whereas 8 (x) correlation

. B . . alls to zero for non-overlapping supports.

tion p® can be parameterised by a single offset paramgter

so that the background density (z;|X) for the kth filter  sonable displacement such&sand hence cannot be inde-

takes a simpler form ag®(z;|pr(X)). Then, at run-time, pendent. Th&2G(x) filter is uncorrelated ar and further

the Bayesian correlation algorithm will repeatedly evaluatexperiments, looking at the entire joint distributions for re-

theoffset functiorp, (X) in order to evaluate likelihood.  sponses;, 2 of two filters with variable separation, confirm
Now training examples must be constructed over circustatistical independence. The independence is at the cost of

4 Learning the background likelihood




Sullivan, Blake, Isard and MacCormick. Bayesian Correlation. Proc. ICCV 99 4

discarding information about mean response, but this can be object (figure 5) and pooling separately over each sub-
beneficial in conferring some invariance to illumination vari-  region. This is especially beneficial with more nearly
ations. Experiments so far have been for complete, circul
supports. With part-segments of a circje € 1), statisti-
cal independence 0¥2G(x) responses deteriorates. This
is established by experiments like the ones in figure 4, bu
now with p < 1, that show correlation lengths increasing
for p < 1, with p = % the worst case. This means greater
statistical dependence between mixed supports, and it is n
clear how this could be improved, but note at least that it i
typically a minority of filter supports that are mixed.

It is known that, forV G filters, the learned background
distributions turn out to be strikingly constant across scene
[19]. Our own experimentation confirms that this holdgigure 5:Foreground subregions.Object interior is subdivided

2 : il Fi A o (left): F = FHoUF U...UFn,, Where sub-region&, ..., Fn
also for V°G/(x) filters and that the distribution is quite ;o o 'are hexagons, ark is the remainder of. Then sub-regigns

We” mOde”ed as a Slng|e-eXp0nentla| dIStI’IbUt@Z?‘(Z) o must be Warped (nght) onto any novel view.
exp —|z|/A, like those emerging in independent components

of images [2] and from maximum entropy arguments [20]. circular objects (eg faces) for which, if isotropic filters

The model fits experimenta| data quite We”fDﬁ 1, though are used, the observation likelihood is insensitive to 2D
not so well for mixed supports < 1, and could be used di-  rotation of the object. . o
rectly to represent background density, rather than carrying Sub-regions are defined for a standard configuration (fig-
entire histograms. ure 5a)); for a general configuration, warped forms-pf

are needed (figure 5b)). An affine approximation to the
. T interior warp is obtained by projection in function-space
5 Learning the foreground likelihood [4, ch 6] and approximation error is dealt with simply by

Learning distributions for foreground responses is similar to  Pooling it into the learned distributions™.

the background case. As befopé,(z|p) is learned for some Statistical independence:known behaviour for indepen-
finite set ofp-values, and interpolated. There are some im- dence of natural scenes, which applied well to back-
portant differences however. ground modelling, could not necessarily be expected to
apply for foreground models, given that the foreground
is far less variable. Nonetheless, repeating the autocorre-
taken into account. Tabulating” not only against lation experimsnts.has produced evidence of good inde-
but also against transformation parameters is computa- .pelnde.nce fok7*G filters over the foregroundtoo._

tionally infeasible. Variations that cannot be modelled Pistribution model: whereas filter responseover (highly
parametrically can nonetheless peoledinto the gen- varlab_le) background texture a_ssumed the ch_aracterlsnc
eral variability represented by (z|p). This implies that kurtotic form, the foreground is far_ Iesg variable and
p” (z|p) should be learned not simply from one frame, therefore does not have extended tails (figure 6).

but from a set of frames containing a succession of typ-
ical transformations of the object. These frames may ei- P(z[X)
ther be separately captured images, or be generated by foregroun
applying random deformations to one image.

Outline constraint: p?(z|p) for 0 < p < 1 was learned
from segments dropped down at random, anywhere on
the background. Over the foreground, and for the case background :
that p = 0, p”(z|p) is similarly learned from a cir- '
C,Ular SUprrtj drop_ped now at any location wholly In'Figure 6: Foreground and background distributions for VG
side the training object. However, wheneyer> 0, the filter, with support radius = 20 pixels. As expected, the back-
foreground supporf'(X) must touch the object outline; ground distribution is more “kurtotic”.
thereforep” (z|p) is learned entirely from segments abut-

ting the outline. Results: learned observation likelihood First, for the
Foreground subdivision: Learning p” (z|p) by pool- hand scene of figure p(Z|X) — the joint likelihood com-
ing responses throughout the object interior is effectivposed of a product (3) of likelihoods(z;|X) for individ-
with distinctive object outlines (eg hand), but poolingual filters — is exercised systematically, over a configuration
does discard information concerning gross spatial layspace of Euclidean similarities (figure 7). The joint likeli-
out. Gross layout can be captured by sub-dividing thieood fuses information from individual supports effectively,

Deformations and pooling: three-dimensional transforma-
tions and deformations of the foreground object must be

YN
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Likelihood Likelihood % Likelihood Likefihood #

Scaling factor

-50 0 50 Translation -50 0 50 Translation _ Rotation
(pixels) (pixels) 90 0 90 (degrees) 0.5 1 15

Figure 7:Exercising the joint likelihood p(Z|X), asX ranges over coordinate translation (at 2 different scaesling and rotation.

with a maximal value, as expected, near the true soluti
(graph origin). The effect of changing the filter scals also |},
demonstrated; as expected, the likelihood function is mqg
broadly tuned, at a coarser scale, appearing to have a wi
of about2r or (due to hyperacuity effects) rather less.

As a final check, it is interesting to consider the likeli;
hood ratio for two configurations, one correctly positionec -
over the target, and one way out over background as in figue
1. In such cases, treating pixels as independent typically pro- prior
duces ridiculously large likelihood ratios. Even using Gaus-
sian masksi(= 20), which we know not to be independent
gives a likelihood ratio ofl : 10°® in this case — implausi-
bly large. However, this falls considerably wiXi* G masks,
as expected given the independence of their output over fo
ground and background, to a far more plausiblel 0*

=

Sampling from the posterior The full joint likelihood |- L
functionp(Z|X) is constructed as a product (3), in which thes : S :
offsetp for each support segment is obtained from its offset posterior:r = 20 pixels posteriorr = 10 pixels
functionp, (X):

Figure 8: Random samples from the posterior. p(X|Z). The
K prior po(X) is a broad distribution of Euclidean similarities (planar
p(Z|X) = H (2| (X)). (6) rigid motion plus size-scaling). At each scalghe posterior mean
= E[X|Z,] (blue) is close to the true configuratioNar[X|Z.,] de-

Evaluation of the offset function requires a geometrical cafréases witl, as expected. Particle set sizeNs= 240 here. (For
clarity, not all particles are shown.)

culation of the size of the circle-segment that approximates
the intersection of the object (at configuratiar) with the
kth support. It is interesting to note that, although Bayesig
analysis requires that should consist of the entire set of
filters 2z in figure 1, some economies can legitimately b
made. Given a sampl¥,,..., Xy of object hypotheses, if
some filter suppor§;, lies always in the background fail
the X,,, the corresponding term can be factored out of (6)
and similarly for any support always in the foreground. |- : ]
The practical application of Bayesian correlation is t0  posterior: = 20 pixels posteriorr = 10 pixels
problems involving the localization of objects. For exam-

. Figure 9: A broader prior “overloads” factored sampling. Now
ple, to locate a hand against a cluttered background, a Pri experiment of figure 8 is repeated, but with a prior 1.®8ras

po(X) is chosen over th? space of Euclidean Sim”firiti(‘—‘f'o_road, causing sampling at these finer scales to break déwgair|,
Samples from the posterior, at several scales, are shownNh= 240.)

figure 8. The broad prior is focused down to a posterior dis-

tribution which is narrower at finer scales. It is not cleain guiding or constraining finer ones, if only a Bayesian sam-

from figure 8 that coarse scales actually have a useful rofging mechanism can be found to do it, and that is the subject
— the finest scale, after all, gives the most precise informaf the next section.

tion. However, if the sampling process is “pressed” harder,

by expanding the prior without increasing the si¥eof the 6

particle-set, the finer scales break down, as figure 9 shows,
while at coarse scale, sampling from the posterior continués section 5, the practical problem of “overloading” was

to operate correctly. That suggests a role for coarser scasmonstrated, that occurs when image observations are made

Layered sampling
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at fine spatial scale, in Bayesian correlation. Layering, intrawith densityp, to each particle has the effect of diffusing

duced here, is a powerful general strategy for reducing corapart identical copies of particles generated in the resam-
putational complexity of factored sampling when the obsepling step and filling the gaps. The combined operation is no
vation likelihood functionf (X)) is narrow. Layered sampling longer an asymptotic identity — particles at the output are

proves effective in dealing with the problem of multi-scalaistributed asymptotically according to the dengigy« p; .

overloading.

The layered sampling algorithm Layered sampling is ap-

Importance resampling Layered sampling uses what weplicable when importance resampling functiofis. . ., far
term “importance resampling”, in which the particles repare available, in whiclfy; = f the true likelihood, and each
resenting some prior distributigny (X) are replicated and f,,,_; is a coarse approximation §,. In addition, the prior
re-weighted (but, unlike conventional importance sampling, must be decomposable as a series of convolutions

[12], none are generated in new configurations). Particles are

()

Po =Py * Py ... * Py

replicated to a degree thatis proportional to the value of some,j tnis corresponds to expressifiga priori as a sum of

weighting functiorny(X), denoted~ ¢ in the top half of fig-

random variables. Functional forms for the densitiesieed

ure 10. Following the re-distribution, likelihood weights are,q; necessarily be known, provided only that a random sam-

g
|

j(X)/_\NQ
| r )

o OO0 o o o o o o o o o o

(@) o o Z Zi g o o O IEI
Tf(X) " |
A\ *p

A X -

(@) o o c?oio olo ° o O

Figure 10: Resampling followed by convolution. A simplified
example to illustrate that importance resamplirg §) on its own
may not repopulate the sparsely sampled support of theHded
f. A subsequent random step, with distributjon is needed.

ple generator can be constructed for each. For example, in
processing motion sequences using tleNGENSATION al-
gorithm [11], p; could be represented as a set of particles
from the previoustimeé—1, andpy = p} ... *p,_, is some
decomposition of a Gaussian mogel X (¢)|X (¢t — 1)) for

the likely displacement over one time-step. With this decom-
position of the prior, the sampling process (4) can be replaced
by a sequence of layers:

/
-~ 0
~ fi * Py
N O O...
X fur ~
O — O
wherex p denotes the particle-set operatieh, 7;) — (s; +

Yi,m), i = 1,...,N, andY; are random variables drawn
independently fromp(.). Each layer includes an importance

/!

0 ML 5 ()

~ fa
N

adjusted to compensate, so that the particle-set continuesé&ampling step, with the observation likelihogdat the
represent the same underlying prigr The re-sampling op- jth scale as the resampling function, until théth and fi-
eration is denoted by & operator with a weighting function nal layer, at which the fine-scafa, acts multiplicatively on
g, as in the following example of factored sampling (4) withiikelihood weights, in the usual way.

an extra, intermediate, weighted resampling stage:
~ g X f ~
VO O ~O0FO

In terms of particle-sets, the resampling operationg is
defined as follows

{(si,mi), i = 1.M} = {(si(j), 1/9(si())), 5 = 1.N}
where eacli(j) is sampled with replacement froim= 1..M
with probability proportional tor;g(s;). (Note that in the
original factored sampling example (4), we hiad= N.)

A key property of the resampling operatien g is that it

is anasymptotic identityrandom resampling from its input
and output particle sets, respectively, produce random vari-

Proof of asymptotic correctness The diagrammatic form

of specification of the particle filter facilitates the proof of
asymptotic correctness — that each particle in the output
set is drawn from a distribution that converges (weakly) to
the posterior, asv. — oo. Asymptotically (using the iden-
tity property of~), (8) can be rewritten, deleting resampling
links, to give

] —— 0% 0 AT
N
X fm ~
O— 0

—_—

ables whose distributions converge to one another, weakly asd now all thep!, convolutions can be composed to give

N — oo.

po, as in (7), and sincéy; = f, the process reduces to the

Resampling with the- ¢ operation does not, on its own, original factored sampling (4). There remains the issue of
deal with the problem of a narrow likelihood function. Al- how to choose the decompositiong@f. A good argument
though it does concentrate sampling to a narrower region oéin be made (details omitted) that, in order to mininiige
configuration space, the gaps between particles are not seiccessive spatial scales should be in fixed ratio; further work
duced (figure 10). Adding independent random variablds needed to generalise this.
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7 Results Occlusion One of the attractions of correlation is its ro-
L . bustness to disturbances in the image data, and a severe form
Layered S"?‘mp."”g is applied here to t_he problem of m“'“bf disturbance is presented by occlusion. Where occlusion
scale localization and pose determination. is anticipated, this is dealt with in the Bayesian Correla-
tion framework simply by treating the occluder as part of

Sampling across scales The f,, from the layered sam- o paciground, and evaluating the appropriate observation-
pling algorithm correspond to observation likelihoods fromfyqjingod functions there. More challenging is occlusion
the coarsest scale = 1 to the finestn = M. Operation itis not anticipated, as in figure 12

of the algorithm is illustrated here, in figure 11, for the hand-
finding problem that caused the overloading of single-scd
sampling in section 5. The Gaussian prigris split, as a
sum of Gaussian variables, into 3 factpss= pj, * p| * ph,
each factor to be used before respective scales, r3
which diminish in fixed ratio for maximum efficiency, as
mentioned earlier. Theéth scale generates an observatio
likelihood functionf;, wheref;(X) = p(Z;|X). Note that
the formal likelihood derives from observations only at th )
finest scale. Observations at other scales are cast by layered prior rs = 10 pixels
sampling in an .adVISory rOIF'T’ via .Importance resampllngF'gure 12:Layered sampling with occlusionAn experiment like
before the next finer scale. This avoids any need for a formﬁ,,e one in figure 11 but now with the object suffering unpreic
occlusion (intermediate scales not displayed).

Pose variations Bayesian correlation is capable of han-
dling a configuration spac& that incorporates varying 3D
pose, as the demonstration of figure 13 shows. The fore-

layerpg of prior r1 = 40 pixels

Figure 13: Pose variationsA foreground distribution was trained
on 3 training images. Test images here show the posterian fro
broadly distributed priors, under variation of pose.

: ground distribution is learned using pooling ovéand fore-
r2 = 20 pixels ground subdivision, as discussed in section 5.

Motion tracking Random sampling lends itself to serial
Bayesian inference, for example over multiple scales as
above. Serial inference can also proceed over time, in or-
der to analyse motion sequences. Edge-based temporal anal-
ysis [11] requires fairly precise initial alignment whereas,

in Bayesian correlation, use of intensity information allows

a degree of automatic initialisation, as in figure 14, even

S

- : : against camouflage, and despite the vigour of the motion.
layerp: of prior rs = 10 pixels We are not yet sure, though, whether Bayesian correlation

Figure 11: Layered sampling across spatial scale¥he experi- can align as precisely as edge-based analysis can.

e e AP T i okt et % ey, el an examle i shown of motion analyss forde-

fied here, with similar computational efforfV( = 24% particles, tfb_rmlng ObJe9tS- A person walking across a room IS trz_icked

N/3 = 80 particles per layer). (figure 15)without background subtraction Instead, dis-

tracting background clutter is dealt with by the learned

assumption of independence across scales. foreground/background models embedded in the observation
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localisation, even with unpredicted occlusion, and versatile
enough to work with 3D pose changes, and with image se-
guences of moving objects, including nonrigid ones. A num-
ber of issues are raised: the choice of partition for the prior
in layered sampling; the use of spatio-temporal filters and as-
sociated independence arguments; temporal updating of the

Figure 14: Motion analysis: leaf blowing vigorously, in camou-
flage. A prior (a) is chosen that is too badly misaligned fogyeed
based tracking. Bayesian correlation nonetheless iisiiglcor-
rectly and, 1120 ms later, is still tracking (b) — trail of nmeshapes
shown. (Data and learned motion model as in [¥1} 10 pixels

andN = 1500 samples.)

(1]

(2]

(3]
(4]
(5]
(6]

(7]

ehsibi

(8]
El

Figure 15:Deformable motion. A deformable contour model with
8 free parameters is used to track a walking person, overtaoou
seconds. (Scaler = 15 pixels with N = 1500 samples. See
version of this paper on our web-site for a movie.)

10
likelihood. Consequently, the method is not limited to back[— :
grounds that are stationary, or moving in some easily préti]
dictable fashion. The computational load consists principally
of: evaluating the likelihood (6), of which offset functions;
pr(X) are the main burden; image processing to obtain the
2. The image processing could be done using pyramid harﬁé]
ware [5]. The offset functions (at scate= 40) can be eval-
uated, forN = 500, at frame-rate, on a desk-top worksta-
tion (SGI Octane). Bayesian correlation at video frame-raté4]
should therefore be quite feasible.

[15]
8 Conclusions

Bayesian correlation is a synthesis of cross-correlatidi®!
matching with probabilistic sampling. Its key, original ele-[17
ments are: the development of likelihood functions for cor-
relation; learning of foreground and background distribupLg]
tions, with particular attention to statistical independence and
“mixed” receptive fields; probabilistic multi-scale analysis[19
by means of “layered sampling”.

The approach has been widely tested on a variety of forg0]
grounds and backgrounds. It is capable of planar object

foreground distribution. These remain for future investiga-
tion.
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