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Abstract

Maximisation of cross-correlation is a commonly used prin-
ciple for intensity-based object localization that gives a sin-
gle estimate of location. However, to facilitate sequential
inference (eg over time or scale) and to allow the representa-
tion of ambiguity, it is desirable to represent an entire prob-
ability distribution for object location. Although the cross-
correlation itself (or some function of it) has sometimes been
treated as a probability distribution, this is not generally jus-
tifiable.

Bayesian correlation achieves a consistent probabilis-
tic treatment by combining several developments. The first
is the interpretation of correlation matching functions in
probabilistic terms, as observation likelihoods. Second,
probability distributions of filter-bank responses are learned
from training examples. Inescapably, response-learning
also demands statistical modelling of background intensi-
ties, and there are links here with image coding and Inde-
pendent Component Analysis. Lastly, multi-scale processing
is achieved, in a Bayesian context, by means of a new al-
gorithm,layered sampling, for which asymptotic properties
are derived.

1 Introduction

Object localization in an imageI(x) can be viewed as the
problem of recovering the warpg

X

(x) that transported a cer-
tain templateT (x) into the image. Here, the warpg

X

is pa-
rameterised byX 2 X , whereX is a configuration space
for the warped template, for example, planar-affine space or
some space of non-rigid deformations. Following the warp,
it is assumed that random imperfections are introduced as a
result of sensor-noise and unmodelled variations.

“Analysis by synthesis” [14] then consists of the Bayesian
construction of a posterior distribution forX . Given a prior
distribution p

0

(X) for the configurationX , and an obser-
vation likelihoodp(ZjX) whereZ � Z(I) is some finite-
dimensional representation of the imageI , then the posterior
density forX is given by

p(X jZ) / p

0

(X)p(ZjX): (1)
In more straightforward, Gaussian cases, (1) can be com-
puted in closed form. In the non-Gaussian cases commonly
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arising, for example in image clutter or with multiple mod-
els, sampling methods are needed [8], and random sampling
underlies the development of Bayesian correlation here.

Relation to previous work Key elements of the work pre-
sented here are:
IB Intensity Basedobservations, not just edges.
FL Foreground Learningin terms of probability distribu-

tions estimated from one or more training examples.
MS Multiple Scalesearch is well known to be a sound basis

for efficient searching of images.
PD Posterior Distributionsfor object location, rather than

just a single estimate, supports sequential reasoning for
multi-scale and image-sequence analysis, and potentially
across sensory modalities.

BM Background Modelling:in a valid Bayesian analysis,
image observationsZ must not be a functionZ(X) of the
hypothesisX . For example, sum-squared difference vio-
lates this principle by considering only the portion of an
image directly under the templateT (x). A Bayesian ap-
proach must use evidence about where the object isnot.
That requires a probabilistic model of the image back-
ground.

SI Statistical Independenceof observations must be en-
sured if constructed observation likelihoods are to be
valid. For instance, assuming independence across ad-
jacent pixels is unjustified, and leads to exaggerated vari-
ations in the likelihoodp(ZjX) for even minor perturba-
tions ofX .
There are three outstanding precursors to Bayesian cor-

relation; one concerns random diffeomorphisms [8]; the
second is an algorithm [17] for registration by maximisa-
tion of mutual information; third is localisation by fore-
ground/background learning [7]. Attributes of these and
other important prior work are summarised in table 1, in
terms of elements of Bayesian correlation as listed above.

2 Probabilistic inference of shape

A natural choice for the setZ of image observations is a
filter-bank consisting of inner-product elementsz

k

; k =

1; : : : ;K applied to the imageI . Each filter-element has the
form

z

k

=

Z

S

k

W

k

(x)I(x)dx; (2)
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IB FL MS PD BM SI Comments
Burt [5] � � multi-scale pyramid
Witkin et al. [18], Scharstein & Szeliski [16] � � scale-space matching
Grenanderet al. [8] � � � random diffeomorphisms
Viola & Wells [17] � � mutual information
Cooteset al. [6] � � � multi-scale active contours
Black & Yacoob [3], Bascle & Deriche [1], Hager & Toyama [9] � � affine flow/warp
Isard & Blake [11] � � random active contours
Olshausen & Field [15], Bell & Sejnowski [2] � � � independent components (ICA)
Geman & Jedynak [7] � � � response learning

Table 1:Precursors to Bayesian correlation.

computing an inner product of the image and the element
functionW

k

, over a finite supportS
k

. Element functions
may consist of copies of a single response-functionW (x),
translated to the nodes of a regular grid, so that the world
is effectively being viewed through a sieve, as in figure 1.
In the familiar case that the space of warpsX consists of

Figure 1: The world through a filter bank Z = (z

1

; : : : ; z

K

),
with circular supportsS

1

; : : : ; S

K

on a regular grid. Given some
hypothesisedX (thick hand-shaped outline), supports are labelled
foreground (green), background (blue) or mixed (yellow). (Note:
example shows anX that is far from the true hand configuration.)

two-dimensional translations, the bank can be thought of as
a discrete sampling of the cross-correlation ofW with I .
In that case, the response-functionW (x) could well be a
translated copy of the object templateT (x), which would
have the effect of tuningz(X) to respond to object posi-
tion. For the higher-dimensional warp-spacesX (e.g. pla-
nar affine) that we want to deal with here, systematic sam-
pling of z(X); X 2 X is no longer feasible. Generalising
the filter bankZ therefore has to take a different tack. The
two-dimensional grid layout can remain, but the response-
functionW becomes something more general. The trans-
lated copiesW

k

generate a set of linear functionals to en-
code (partially) an imageI , with the necessary statistical in-
dependence, but no longer tuned to any particular object. Of
course, an important generalisation is that there may be more
than one type of response-function (eg for various scales),
each of which is replicated over the grid to form the compo-
nentsz

k

of Z. The entire filter-bank scheme has the attrac-
tion that fixed, computationally efficient architectures can be
used to computeZ, for instance wavelets [13], pyramids [5]
or biological “hypercolumn” hardware [10].

Learning We have argued thatp(ZjX) contains both fore-
ground and background components. Tackling image-texture
modelling head-on would be complex. An oblique approach
is to learn filter-likelihoodsp(z

k

jX) directly from training
images, as [7] but, crucially, also tackling the inescapable is-
sue ofmixedsupports (figure 1). This side-steps any need for
a complete model of foreground or background, modelling
themonly as they appear in the sieveof figure 1. Then, pro-
vided also that theW

k

can be chosen to give the necessary
statistical independence, the full observation likelihood can
be constructed as a product:

p(ZjX) =

K

Y

k=1

p(z

k

jX): (3)

Factored sampling For non-Gaussian problems, (1) can be
simulated by generating random variates from a distribution
that approximates the posteriorp(X jZ). In factored sam-
pling [8], a weighted particle-setf(s

1

; �

1

); : : : ; (s

N

; �

N

)g,
of sizeN , is generated from the prior densityp

0

(X) and each
particles

i

is associated with a likelihood weight�
i

= f(s

i

)

wheref(X) = p(ZjX). Then, an indexi 2 f1; : : : ; Ng

is sampled with replacement, with a probability proportional
to �

i

; the associateds
i

is effectively drawn from a distribu-
tion that converges (weakly) to the posterior, asN ! 1. It
will prove useful later to express the sampling scheme graph-
ically, as a “particle diagram”

p

0

N

-



� f

-



�

N

-

: (4)

It is interpreted as follows: the first arrow denotes drawing
N particles from a known densityp

0

, with equal weights
�

i

= 1=N . (Particle sets are represented by open circles.)
The� f operation denotes likelihood weighting of a particle
set: (s

i

; �

i

) ! (s

i

; f(s

i

)�

i

); i = 1; : : : ; N . The final step
denotes sampling with replacement, as described above, re-
peatedN times, to form a new set of sizeN in which each
particle is given equal weight, and which is drawn approxi-
mately from the posterior.

3 Probabilistic modelling of observations

The observation (ie output value)z from an individual filter
is generated by integration over a support-setS (figure 2)
and generally has both a background componentB(X) and
a foreground componentF (X):



Sullivan, Blake, Isard and MacCormick. Bayesian Correlation. Proc. ICCV 99 3

approx
B(X)

F(X)

B(X)

F(X)

ρ2r

2r

object

object outline

Figure 2:The support of a filter is split into subsetsF (X) — fore-
ground andB(X) — background. The boundary between subsets
is approximated as a line, soB(X) andF (X) are segments of a
circle with offsets2r� and2r(1� �) respectively.

zjX =

Z

B(X)

W (x)I

B

(x) dx

| {z }

MAIN NOISE SOURCE

+

Z

F (X)

W (x)I

F

(x) dx:

(5)
Then, considering the outputz

k

of thekth filter at run-time,
under a hypothesised configurationX , the Bayesian corre-
lation algorithm needs to compare the measuredz

k

against
the likelihoodp

k

(z

k

jX). Likelihood p

k

(zj:) represents a
sum of background and foreground components, and is there-
fore constructed as a (numerically approximated) convolu-
tion p

k

(zjX) = p

B

k

(zjX) � p

F

k

(zjX) of learned background
and foreground density functions.

The main source of variability inzjX is expected to come
from the background which is a sample from some class
of scenes, assumed large and only generally known. In
contrast, the foreground relates to a given object, relatively
precisely known, though still subject to some ambient- and
class-variability. This means that there should be a steady
reduction in the variance of the distribution ofzjX asX
changes from values in which the circular support is over
foreground, via mixed foreground/background, to pure back-
ground. This is supported by experiments shown later. Dis-
tributionsp(zjX) are learned for fixed values ofX and effec-
tively assembled and sliced to give observation likelihoods
(figure 3). For example,z = 2 in the figure depicts a rela-
tively high value which, in the example, is more likely to be
associated with a filter-support lying mainly over the fore-
ground. The resulting likelihood is peaked around a value of
X corresponding to predominant foreground support. Con-
versely, forz = �1, the mode of the likelihood shifts towards
background values ofX .

4 Learning the background likelihood

It proves efficient to approximate the curve dividingF (X)

andB(X) as a straight line (figure 2). In that case, if each
filter functionalW

k

(x) is isotropic the background distribu-
tion pB can be parameterised by a single offset parameter�,
so that the background densitypB

k

(z

k

jX) for the kth filter
takes a simpler form aspB(z

k

j�

k

(X)). Then, at run-time,
the Bayesian correlation algorithm will repeatedly evaluate
theoffset function�

k

(X) in order to evaluate likelihood.
Now training examples must be constructed over circu-
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Figure 3:Observation likelihood. The densityp(zjX) is formally
a function ofz with X as a parameter, and is illustrated for fore-
ground and background cases. Nowp(zjX) is “sliced” in the or-
thogonal direction, to generate likelihoods — functions ofX for
fixedz

lar segments with offsets throughout the range0 � � � 1,
to learn the distributionspB(zj�). (In practice,�-values are
sampled and interpolated.) ThepB(z

k

j�

k

(X)) should be in-
dependent so that a joint likelihood can be constructed, ag-
gregating all observationsz

k

(3). Independence is an issue
also in “neural coding” [15]: efficient codes that avoid re-
dundancy need statistically independent components. Inde-
pendent components of natural scenes are known to have
“kurtotic” or “sparse” distributions — ones with extended
tails compared with those of a normal distribution [2]. A
necessary condition for independence is freedom from cor-
relation, so autocorrelation was estimated, for four different
scenes (desk-top, rooms, tree), by random sampling of pairs
of supports, with varying separation. This was done for two
filter functionsW (x): GaussianG(x) (positive mean) and
Laplacian of Gaussianr2

G(x) (zero mean), whereG(x) =
1

�

2

exp�

jxj

2

2�

2

, in a circular support of radiusr = 3�, as in
figure 4. As expected, theG(x) filter is correlated at a rea-

1

correlation

displacement
    (pixels)

Gaussian

Laplacian

0
50 100

r = 10 
correlation

displacement
    (pixels)

Gaussian

Laplacian

0

1 r = 20 

50 100

Figure 4: Autocorrelation of filter output. Results for the desk-
top scene, at two spatial scalesr. The Gaussian filterG(x) shows
substantial long-range correlation whereas, forr

2

G(x) correlation
falls to zero for non-overlapping supports.

sonable displacement such as2r and hence cannot be inde-
pendent. Ther2

G(x) filter is uncorrelated at2r and further
experiments, looking at the entire joint distributions for re-
sponsesz

k

; z

l

of two filters with variable separation, confirm
statistical independence. The independence is at the cost of
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discarding information about mean response, but this can be
beneficial in conferring some invariance to illumination vari-
ations. Experiments so far have been for complete, circular
supports. With part-segments of a circle (� < 1), statisti-
cal independence ofr2

G(x) responses deteriorates. This
is established by experiments like the ones in figure 4, but
now with � < 1, that show correlation lengths increasing
for � < 1, with � =

1

4

the worst case. This means greater
statistical dependence between mixed supports, and it is not
clear how this could be improved, but note at least that it is
typically a minority of filter supports that are mixed.

It is known that, forrG filters, the learned background
distributions turn out to be strikingly constant across scenes
[19]. Our own experimentation confirms that this holds
also forr2

G(x) filters and that the distribution is quite
well modelled as a single-exponential distributionpB(z) /
exp�jzj=�, like those emerging in independent components
of images [2] and from maximum entropy arguments [20].
The model fits experimental data quite well for� = 1, though
not so well for mixed supports� < 1, and could be used di-
rectly to represent background density, rather than carrying
entire histograms.

5 Learning the foreground likelihood

Learning distributions for foreground responses is similar to
the background case. As before,p

F

(zj�) is learned for some
finite set of�-values, and interpolated. There are some im-
portant differences however.

Deformations and pooling: three-dimensional transforma-
tions and deformations of the foreground object must be
taken into account. TabulatingpF not only against�
but also against transformation parameters is computa-
tionally infeasible. Variations that cannot be modelled
parametrically can nonetheless bepooled into the gen-
eral variability represented bypF (zj�). This implies that
p

F

(zj�) should be learned not simply from one frame,
but from a set of frames containing a succession of typ-
ical transformations of the object. These frames may ei-
ther be separately captured images, or be generated by
applying random deformations to one image.

Outline constraint: p

B

(zj�) for 0 < � � 1 was learned
from segments dropped down at random, anywhere on
the background. Over the foreground, and for the case
that � = 0, pF(zj�) is similarly learned from a cir-
cular support, dropped now at any location wholly in-
side the training object. However, whenever� > 0, the
foreground supportF (X) must touch the object outline;
thereforepF (zj�) is learned entirely from segments abut-
ting the outline.

Foreground subdivision: Learning p

F

(zj�) by pool-
ing responses throughout the object interior is effective
with distinctive object outlines (eg hand), but pooling
does discard information concerning gross spatial lay-
out. Gross layout can be captured by sub-dividing the

object (figure 5) and pooling separately over each sub-
region. This is especially beneficial with more nearly

Figure 5:Foreground subregions.Object interiorF is subdivided
(left): F = F

0

[F

1

[ : : :[F

N

F

, where sub-regionsF
1

; : : : ;F

N

F

here are hexagons, andF
0

is the remainder ofF . Then sub-regions
must be warped (right) onto any novel view.

circular objects (eg faces) for which, if isotropic filters
are used, the observation likelihood is insensitive to 2D
rotation of the object.
Sub-regions are defined for a standard configuration (fig-
ure 5a)); for a general configuration, warped forms ofF

i

are needed (figure 5b)). An affine approximation to the
interior warp is obtained by projection in function-space
[4, ch 6] and approximation error is dealt with simply by
pooling it into the learned distributionspFi .

Statistical independence:known behaviour for indepen-
dence of natural scenes, which applied well to back-
ground modelling, could not necessarily be expected to
apply for foreground models, given that the foreground
is far less variable. Nonetheless, repeating the autocorre-
lation experiments has produced evidence of good inde-
pendence forr2

G filters over the foreground too.
Distribution model: whereas filter responsez over (highly

variable) background texture assumed the characteristic
kurtotic form, the foreground is far less variable and
therefore does not have extended tails (figure 6).

z

p(z|X)

foreground

background

Figure 6: Foreground and background distributions for r2

G

filter , with support radiusr = 20 pixels. As expected, the back-
ground distribution is more “kurtotic”.

Results: learned observation likelihood First, for the
hand scene of figure 1,p(ZjX) — the joint likelihood com-
posed of a product (3) of likelihoodsp(z

k

jX) for individ-
ual filters — is exercised systematically, over a configuration
space of Euclidean similarities (figure 7). The joint likeli-
hood fuses information from individual supports effectively,
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Likelihood pixelsr=40

0 Rotation
(degrees)
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Likelihood r=20 pixels

0.5 1 1.5

Scaling factor

Likelihood r=20 pixels

Figure 7:Exercising the joint likelihood p(ZjX), asX ranges over coordinate translation (at 2 different scales), scaling and rotation.

with a maximal value, as expected, near the true solution
(graph origin). The effect of changing the filter scaler is also
demonstrated; as expected, the likelihood function is more
broadly tuned, at a coarser scale, appearing to have a width
of about2r or (due to hyperacuity effects) rather less.

As a final check, it is interesting to consider the likeli-
hood ratio for two configurations, one correctly positioned
over the target, and one way out over background as in figure
1. In such cases, treating pixels as independent typically pro-
duces ridiculously large likelihood ratios. Even using Gaus-
sian masks (r = 20), which we know not to be independent,
gives a likelihood ratio of1 : 10

55 in this case — implausi-
bly large. However, this falls considerably withr2

G masks,
as expected given the independence of their output over fore-
ground and background, to a far more plausible1 : 10

4

Sampling from the posterior The full joint likelihood
functionp(ZjX) is constructed as a product (3), in which the
offset� for each support segment is obtained from its offset
function�

k

(X):

p(ZjX) =

K

Y

k=1

p

k

(z

k

j�

k

(X)): (6)

Evaluation of the offset function requires a geometrical cal-
culation of the size of the circle-segment that approximates
the intersection of the object (at configurationX) with the
kth support. It is interesting to note that, although Bayesian
analysis requires thatZ should consist of the entire set of
filters z

k

in figure 1, some economies can legitimately be
made. Given a sampleX

1

; : : : ; X

N

of object hypotheses, if
some filter supportS

k

lies always in the background forall
theX

n

, the corresponding term can be factored out of (6),
and similarly for any support always in the foreground.

The practical application of Bayesian correlation is to
problems involving the localization of objects. For exam-
ple, to locate a hand against a cluttered background, a prior
p

0

(X) is chosen over the space of Euclidean similarities.
Samples from the posterior, at several scales, are shown in
figure 8. The broad prior is focused down to a posterior dis-
tribution which is narrower at finer scales. It is not clear
from figure 8 that coarse scales actually have a useful role
— the finest scale, after all, gives the most precise informa-
tion. However, if the sampling process is “pressed” harder,
by expanding the prior without increasing the sizeN of the
particle-set, the finer scales break down, as figure 9 shows,
while at coarse scale, sampling from the posterior continues
to operate correctly. That suggests a role for coarser scales

prior posterior:r = 40 pixels

posterior:r = 20 pixels posterior:r = 10 pixels

Figure 8: Random samples from the posterior. p(XjZ). The
prior p

0

(X) is a broad distribution of Euclidean similarities (planar
rigid motion plus size-scaling). At each scaler, the posterior mean
E [XjZ

r

] (blue) is close to the true configuration;Var[XjZ
r

] de-
creases withr, as expected. Particle set size isN = 240 here. (For
clarity, not all particles are shown.)

posterior:r = 20 pixels posterior:r = 10 pixels

Figure 9:A broader prior “overloads” factored sampling. Now
the experiment of figure 8 is repeated, but with a prior 1.5 times as
broad, causing sampling at these finer scales to break down. (Again,
N = 240.)

in guiding or constraining finer ones, if only a Bayesian sam-
pling mechanism can be found to do it, and that is the subject
of the next section.

6 Layered sampling

In section 5, the practical problem of “overloading” was
demonstrated, that occurs when image observations are made
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at fine spatial scale, in Bayesian correlation. Layering, intro-
duced here, is a powerful general strategy for reducing com-
putational complexity of factored sampling when the obser-
vation likelihood functionf(X) is narrow. Layered sampling
proves effective in dealing with the problem of multi-scale
overloading.

Importance resampling Layered sampling uses what we
term “importance resampling”, in which the particles rep-
resenting some prior distributionp

0

(X) are replicated and
re-weighted (but, unlike conventional importance sampling
[12], none are generated in new configurations). Particles are
replicated to a degree that is proportional to the value of some
weighting functiong(X), denoted� g in the top half of fig-
ure 10. Following the re-distribution, likelihood weights are

g(X)  
~ g  

f(X)  

X
* p  

1

0p  

0p  

* p  
10p  

Figure 10: Resampling followed by convolution. A simplified
example to illustrate that importance resampling (� g) on its own
may not repopulate the sparsely sampled support of the likelihood
f . A subsequent random step, with distributionp

1

, is needed.

adjusted to compensate, so that the particle-set continues to
represent the same underlying priorp

0

. The re-sampling op-
eration is denoted by a� operator with a weighting function
g, as in the following example of factored sampling (4) with
an extra, intermediate, weighted resampling stage:

p

0

N

-



� g

N

-



� f

-



�

N

-

:

In terms of particle-sets, the resampling operation� g is
defined as follows
f(s

i

; �

i

); i = 1::Mg ! f(s

i(j)

; 1=g(s

i(j)

)); j = 1::Ng

where eachi(j) is sampled with replacement fromi = 1::M

with probability proportional to�
i

g(s

i

). (Note that in the
original factored sampling example (4), we hadM = N .)

A key property of the resampling operation� g is that it
is anasymptotic identity: random resampling from its input
and output particle sets, respectively, produce random vari-
ables whose distributions converge to one another, weakly as
N !1.

Resampling with the� g operation does not, on its own,
deal with the problem of a narrow likelihood function. Al-
though it does concentrate sampling to a narrower region of
configuration space, the gaps between particles are not re-
duced (figure 10). Adding independent random variables

with densityp
1

to each particle has the effect of diffusing
apart identical copies of particles generated in the resam-
pling step and filling the gaps. The combined operation is no
longer an asymptotic identity — particles at the output are
distributed asymptotically according to the densityp

0

� p

1

.

The layered sampling algorithm Layered sampling is ap-
plicable when importance resampling functionsf

1

; : : : ; f

M

are available, in whichf
M

= f the true likelihood, and each
f

m�1

is a coarse approximation tof
m

. In addition, the prior
p

0

must be decomposable as a series of convolutions
p

0

= p

0

0

� p

0

1

: : : � p

0

M�1

(7)
and this corresponds to expressingX a priori as a sum of
random variables. Functional forms for the densitiesp

0

m

need
not necessarily be known, provided only that a random sam-
ple generator can be constructed for each. For example, in
processing motion sequences using the CONDENSATION al-
gorithm [11], p0

0

could be represented as a set of particles
from the previous timet�1, andp

d

= p

0

1

: : :�p

0

M�1

is some
decomposition of a Gaussian modelp

d

(X(t)jX(t � 1)) for
the likely displacement over one time-step. With this decom-
position of the prior, the sampling process (4) can be replaced
by a sequence of layers:

p

0

0

N

-



� f

1

N

-



� p

0

1

-

 : : :

� f

M�1

N

-



� p

0

M�1

-



� f

M

-



�

N

-

;

(8)

where� p denotes the particle-set operation(s

i

; �

i

)! (s

i

+

Y

i

; �

i

); i = 1; : : : ; N , andY
i

are random variables drawn
independently fromp(:). Each layer includes an importance
resampling step, with the observation likelihoodf

i

at the
ith scale as the resampling function, until theM th and fi-
nal layer, at which the fine-scalef

M

acts multiplicatively on
likelihood weights, in the usual way.

Proof of asymptotic correctness The diagrammatic form
of specification of the particle filter facilitates the proof of
asymptotic correctness — that each particle in the output
set is drawn from a distribution that converges (weakly) to
the posterior, asN ! 1. Asymptotically (using the iden-
tity property of�), (8) can be rewritten, deleting resampling
links, to give

p

0

0

N

-



� p

0

1

-

: : :

� p

0

M�1

-



� f

M

-



�

N

-



and now all thep0
m

convolutions can be composed to give
p

0

, as in (7), and sincef
M

= f , the process reduces to the
original factored sampling (4). There remains the issue of
how to choose the decomposition ofp

d

. A good argument
can be made (details omitted) that, in order to minimiseN ,
successive spatial scales should be in fixed ratio; further work
is needed to generalise this.
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7 Results

Layered sampling is applied here to the problem of multi-
scale localization and pose determination.

Sampling across scales The f

m

from the layered sam-
pling algorithm correspond to observation likelihoods from
the coarsest scalem = 1 to the finestm = M . Operation
of the algorithm is illustrated here, in figure 11, for the hand-
finding problem that caused the overloading of single-scale
sampling in section 5. The Gaussian priorp

0

is split, as a
sum of Gaussian variables, into 3 factorsp

0

= p

0

0

� p

0

1

� p

0

2

,
each factor to be used before respective scalesr

1

; r

2

; r

3

which diminish in fixed ratio for maximum efficiency, as
mentioned earlier. Theith scale generates an observation
likelihood functionf

i

, wheref
i

(X) = p(Z

i

jX). Note that
the formal likelihood derives from observations only at the
finest scale. Observations at other scales are cast by layered
sampling in an “advisory” role, via importance resampling
before the next finer scale. This avoids any need for a formal

layerp0
0

of prior r

1

= 40 pixels

layerp0
1

of prior r

2

= 20 pixels

layerp0
2

of prior r

3

= 10 pixels

Figure 11: Layered sampling across spatial scalesThe experi-
ment of figure 9 is repeated, but now with layered sampling, from
coarse to fine scale. The overload evident in figure 9 is recti-
fied here, with similar computational effort (N = 240 particles,
N=3 = 80 particles per layer).

assumption of independence across scales.

Occlusion One of the attractions of correlation is its ro-
bustness to disturbances in the image data, and a severe form
of disturbance is presented by occlusion. Where occlusion
is anticipated, this is dealt with in the Bayesian Correla-
tion framework simply by treating the occluder as part of
the background, and evaluating the appropriate observation-
likelihood functions there. More challenging is occlusion
that is not anticipated, as in figure 12.

prior r

3

= 10 pixels

Figure 12:Layered sampling with occlusionAn experiment like
the one in figure 11 but now with the object suffering unpredicted
occlusion (intermediate scales not displayed).

Pose variations Bayesian correlation is capable of han-
dling a configuration spaceX that incorporates varying 3D
pose, as the demonstration of figure 13 shows. The fore-

Figure 13:Pose variationsA foreground distribution was trained
on 3 training images. Test images here show the posterior from
broadly distributed priors, under variation of pose.

ground distribution is learned using pooling overX and fore-
ground subdivision, as discussed in section 5.

Motion tracking Random sampling lends itself to serial
Bayesian inference, for example over multiple scales as
above. Serial inference can also proceed over time, in or-
der to analyse motion sequences. Edge-based temporal anal-
ysis [11] requires fairly precise initial alignment whereas,
in Bayesian correlation, use of intensity information allows
a degree of automatic initialisation, as in figure 14, even
against camouflage, and despite the vigour of the motion.
We are not yet sure, though, whether Bayesian correlation
can align as precisely as edge-based analysis can.

Finally, an example is shown of motion analysis for de-
forming objects. A person walking across a room is tracked
(figure 15)without background subtraction. Instead, dis-
tracting background clutter is dealt with by the learned
foreground/background models embedded in the observation
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Figure 14: Motion analysis: leaf blowing vigorously, in camou-
flage. A prior (a) is chosen that is too badly misaligned for edge-
based tracking. Bayesian correlation nonetheless initialises cor-
rectly and, 1120 ms later, is still tracking (b) — trail of mean shapes
shown. (Data and learned motion model as in [11];r = 10 pixels
andN = 1500 samples.)

Figure 15:Deformable motion. A deformable contour model with
8 free parameters is used to track a walking person, over about 3
seconds. (Scale:r = 15 pixels withN = 1500 samples. See
version of this paper on our web-site for a movie.)

likelihood. Consequently, the method is not limited to back-
grounds that are stationary, or moving in some easily pre-
dictable fashion. The computational load consists principally
of: evaluating the likelihood (6), of which offset functions
�

k

(X) are the main burden; image processing to obtain the
z

k

. The image processing could be done using pyramid hard-
ware [5]. The offset functions (at scaler = 40) can be eval-
uated, forN = 500, at frame-rate, on a desk-top worksta-
tion (SGI Octane). Bayesian correlation at video frame-rate
should therefore be quite feasible.

8 Conclusions
Bayesian correlation is a synthesis of cross-correlation
matching with probabilistic sampling. Its key, original ele-
ments are: the development of likelihood functions for cor-
relation; learning of foreground and background distribu-
tions, with particular attention to statistical independence and
“mixed” receptive fields; probabilistic multi-scale analysis
by means of “layered sampling”.

The approach has been widely tested on a variety of fore-
grounds and backgrounds. It is capable of planar object

localisation, even with unpredicted occlusion, and versatile
enough to work with 3D pose changes, and with image se-
quences of moving objects, including nonrigid ones. A num-
ber of issues are raised: the choice of partition for the prior
in layered sampling; the use of spatio-temporal filters and as-
sociated independence arguments; temporal updating of the
foreground distribution. These remain for future investiga-
tion.
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