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Abstract. Condensation, recently introduced in the computer vision

literature, is a particle �ltering algorithm which represents a tracked ob-

ject's state using an entire probability distribution. Clutter can cause the

distribution to split temporarily into multiple peaks, each representing

a di�erent hypothesis about the object con�guration. When measure-

ments become unambiguous again, all but one peak, corresponding to

the true object position, die out. While several peaks persist estimating

the object position is problematic. \Smoothing" in this context is the

statistical technique of conditioning the state distribution on both past

and future measurements once tracking is complete. After smoothing,

peaks corresponding to clutter are reduced, since their trajectories even-

tually die out. The result can be a much improved state-estimate during

ambiguous time-steps. This paper implements two algorithms to smooth

the output of a Condensation �lter. The techniques are derived from

the work of Kitagawa, reinterpreted in the Condensation framework,

and considerably simpli�ed.

1 Introduction

The Condensation algorithm was recently introduced in the context of com-

puter vision, originally to allow contour-tracking through heavy clutter [5], and

more recently as the engine for exploring more complex non-linear dynamical

models than have been traditionally used in vision [6, 4]. The algorithm is at-

tractive because it is both simple and very general, and thus has potential ap-

plication to a wide range of estimation problems beyond those contour-based

tracking applications for which is has so far been used in computer vision. In

fact, the Condensation algorithm is functionally identical to algorithms devel-

oped in the target-tracking [2] and statistical literature [7]. In his formulation of

the algorithm, Kitagawa [7] also presented two smoothing algorithms which al-

low the state at time t to be estimated in the light of all of the measurement data

in a sequence, rather than just the data up until time t. Note that in this paper

\smoothing" refers to the statistical technique of conditioning the state density

on both past and future measurements. It has nothing to do with the standard

computer vision de�nition involving convolution with a smoothing kernel, either

spatially or temporally.



This paper implements Kitagawa's smoothing algorithms in the Condensa-

tion framework, and in doing so incorporates a signi�cant simpli�cation of one

of them which extends its use to a wider class of dynamical model. Smoothing

highlights an aspect of Condensation which has not so far been much studied.

One of the distinguishing characteristics of the Condensation algorithm is that

it represents multiple hypotheses about object state in the form of a multi-modal

state density. All of the known information about the object is contained in the

state density, and this information must be processed in some way if a single es-

timated object position is required at each time-step. Existing implementations

calculate simple moments of the state density, for example the mean, for dis-

play purposes. This approach breaks down when the density has several peaks,

and one advantage of a smoothing �lter is that it tends to eliminate hypotheses

which become unlikely with hindsight. The result is that the smoothed density

better approximates a uni-modal density, and simple mean-estimation produces

a more accurate representation of the density. The next section brie
y describes

the Condensation algorithm, and smoothing extensions are presented in fol-

lowing sections.

2 The Condensation algorithm

The Condensation algorithm [5, 6] was developed to address the problem of

tracking contour outlines through heavy image clutter. The �lter's output at a

given time-step, rather than being a single estimate of position and covariance

as in a Kalman �lter, is an approximation of an entire probability distribution

of likely object positions. This allows the �lter to maintain multiple hypotheses

and thus be robust to distracting clutter.

The object's position, shape and velocity are encoded in a state vector

X 2 R

N

X

(which may, for example, represent the outline of a curve using a

low-dimensional parameterisation), and the observed image at time t is denoted

Z

t

, with measurement history Z

t

= (Z

1

; : : : ;Z

t

). The representation used for

probability distributions is derived from factored sampling [3, 9], where it was

applied to static images. Factored sampling is a Bayesian technique to approx-

imate a distribution p(XjZ) which applies when p(XjZ) is too complicated to

sample directly, but when the prior p(X) can be sampled, and the measurement

density p(ZjX) can be evaluated. The algorithm proceeds by generating a set

of N samples fs

(n)

g from the prior p(X) and then assigning to each sample a

weight �

(n)

= p(ZjX = s

(n)

) corresponding to the measurement density. The

�

(n)

are normalised to sum to 1 and then the weighted set f(s

(n)

; �

(n)

)g is an

approximation ~p(XjZ) to the desired posterior p(XjZ), where a sample is drawn

from ~p(XjZ) by choosing one of the s

(n)

with probability �

(n)

. As N ! 1

samples from ~p(XjZ) arbitrarily closely approximate fair samples from p(XjZ).

Moments of the posterior can also be estimated as

E [�(X)] �

N

X

n=1

�

(n)

�

�

s

(n)

�

:



The Condensation algorithm is a generalisation of factored sampling to

temporal sequences, where the conditional state density p(X

t

jZ

t

) at time t is

approximated by a weighted, time-stamped sample set f(s

(n)

t

; �

(n)

t

)g. Each itera-

tion of the algorithm is a self-contained application of factored sampling in which

the prior p(X

t

) is replaced by a prediction density p(X

t

jZ

t�1

). This density is ap-

proximated by taking the sample set f(s

(n)

t�1

; �

(n)

t�1

)g from the previous time-step

and applying a prediction from a dynamical model. The iterative process applied

to the sample-sets is depicted in �gure 1. At the top of the diagram, the output
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Fig. 1. One time-step in the Condensation algorithm. Blob centres represent

sample values and sizes depict sample weights.

from time-step t � 1 is the weighted sample-set f(s

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng.

The aim is to maintain, at successive time-steps, sample sets of �xed size N ,

so that the algorithm can be guaranteed to run within a given computational

resource.

The procedure for a single time-step consists of N iterations to generate

the N elements of the new sample set. The �rst operation of iteration n is to

choose a \base sample" s

(i)

t�1

from the sample-set at time t � 1. This is done

by sampling (with replacement), choosing a given element s

(i)

t�1

with probability

�

(i)

t�1

. Some elements, especially those with high weights, may be chosen several

times as n goes from 1 to N , while others with relatively low weights may

not be chosen at all. The second step is to subject the chosen element to a



prediction corresponding to the dynamical model. This is a stochastic model,

and the prediction of a new sample s

(n)

t

from a base sample s

(i)

t�1

corresponds

to sampling from the process density p(X

t

jX

t�1

= s

(i)

t�1

), so the predictions

from identical base samples will in general be di�erent. Any dynamical model

can be used e�ciently within the algorithm provided that it is straightforward

to sample from this process density. At this point the s

(n)

t

are approximately

a fair sample from the distribution p(X

t

jZ

t�1

). Finally, the observation step is

applied, calculating a weight �

(n)

t

for s

(n)

t

by evaluating the observation density

p(Z

t

jX

t

= s

(n)

t

). After iterating over n the �

(n)

t

are normalised and the sample-

set representation f(s

(n)

t

; �

(n)

t

)g of the state-density for time t, an approximation

to p(X

t

jZ

t

), has been obtained. As with factored sampling, at any time-step it

is possible to \report" on the current state, for example by evaluating some

moment of the state density as

E [�(X

t

)jZ

t

] �

N

X

n=1

�

(n)

t

�

�

s

(n)

t

�

; (1)

where typically �(X) = X is used to estimate the mean of the distribution.

3 Smoothing the output of Condensation

The conditional state density p(X

t

jZ

t

) encodes all of the known information

about the object state given the current measurement history Z

t

� (Z

1

; : : : ;Z

t

).

Once tracking has completed it may be desirable to return, in batch-mode, to

calculate p(X

t

jZ

T

), the state density for each time-step given the entire measure-

ment history. This is particularly valuable in the case of temporary distraction,

when the state density splits for a few time-steps into several distinct trajecto-

ries. During real-time

1

tracking, it is impossible to reliably determine which of

these competing hypotheses corresponds to the true object trajectory, however

all but one of the trajectories will \die out" eventually when it becomes apparent

that they correspond to clutter, distractions or mis-estimation.

Kitagawa [7] presents two algorithms to smooth a time-series of sample-

set state estimates, which we reproduce here in the Condensation frame-

work. The �rst is very straightforward. Rather than storing the set f(s

(n)

t

; �

(n)

t

)g

at each time t, the sample position s

(n)

t

is replaced by an entire trajectory

S

(n)

t

= (s

(n;1)

t

; : : : ; s

(n;t)

t

). The history (s

(n;1)

t

; : : : ; s

(n;t�1)

t

) is taken to be the

trajectory of the base sample which is chosen in the �rst step of the Conden-

sation algorithm, and the moments of the smoothed density p(X

�

jZ

t

) can be

1

Real time is used here to distinguish the standard Condensation tracking algorithm

from any batch-mode post-processing. It does not imply the standard computer vi-

sion meaning, that tracking is e�ected in the time between acquisition of consecutive

images.



estimated for 1 � � � t by computing the expectation

E [�(X

�

)jZ

t

] �

N

X

n=1

�

(n)

t

�

�

s

(n;�)

t

�

:

The sequence-based smoothing algorithm is shown in �gure 2. Note that it is

reminiscent of the Viterbi dynamic programming algorithm used, for example,

to estimate the most likely path through a Hidden Markov Model (HMM) [8].

This algorithm has the disadvantage that in practice, the variance of the samples

Iterate

From the \old" sample-sequence set f(S

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng at time-step

t � 1, construct a \new" sample-sequence set f(S

(n)

t

; �

(n)

t

); n = 1; : : : ; Ng for

time t, where S

(n)

t

= (s

(n;1)

t

; : : : ; s

(n;t)

t

).

Construct the n

th

of N new samples as follows:

1. Select a base sequence S

(i)

t�1

= (s

(i;1)

t�1

; : : : ; s

(i;t�1)

t�1

) by sampling with proba-

bility �

(i)

t�1

. This can be done e�ciently, for example using cumulative prob-

abilities.

2. Predict by sampling from p(X

t

jX

t�1

= s

(i;t�1)

t�1

) to choose s

(n;t)

t

.

3. Measure and weight the new position in terms of the image data Z

t

, setting

�

(n)

t

= p(Z

t

jX

t

= s

(n;t)

t

), then set S

(n)

t

= S

(i)

t�1

[ s

(n;t)

t

.

Finally normalise so that

P

n

�

(n)

t

= 1 to �nd the new sample-sequence set

(S

(n)

t

; �

(n)

t

). Moments � of the smoothed density p(X

�

jZ

t

) for 1 � � � t can

be found from

E [�(X

�

)jZ

t

] �

N

X

n=1

�

(n)

t

�

�

s

(n;�)

t

�

Fig. 2. The sequence-based smoothing algorithm for Condensation. The al-

gorithm is identical to standard Condensation �ltering, except that entire trajectories

S

(n)

t

are stored instead of sample positions s

(n)

t

.

fs

(n;�)

t

g for � � t is very small. In fact, for large t�� it is typical to �nd that all

of the fs

(n;�)

t

; 1 : : :Ng are identical, meaning that all of the sample-sequences

share a common ancestor trajectory. (In later results this is typically true for

t � � > 10.) This may be acceptable if the only required output is a single

estimated position for each time-step, but in some circumstances it is preferable

to maintain more detailed information as long as possible, and so a more complex

algorithm follows. Note that the collapse of the trajectories S

(n)

t

into common



histories permits pruning, thus allowing a signi�cant economy of storage, which

is otherwise O(Nt).

The second smoothing algorithm presented in [7] is a forward{backward al-

gorithm, analogous to the smoothing algorithm for Gaussians [1] which is a two-

pass extension of the Kalman �lter, and also related to the Baum-Welch forward{

backward algorithm for HMMs [8]. The forward pass consists of a standard ap-

plication of the Condensation tracker, during which all the sets f(s

(n)

t

; �

(n)

t

)g

for t = 1 : : : T are stored. Now smoothing is done purely by reweighting the

�

(n)

t

| all of the s

(n)

t

remain �xed. The algorithm presented in [7] contains a

backward �ltering step which requires access to the measurements Z

t

during

the second pass, and also means that the density p(X

t�1

jX

t

) must be available

for sampling, a condition which is not true for the standard Condensation

algorithm. We believe this backward �ltering step is unnecessary and so do not

include it, however the mathematical treatment and the basic structure of our

algorithm are both derived from [7]. Note that our algorithm, like that in [7],

does require the evaluation of p(X

t

jX

t�1

) which imposes some restriction on the

form of dynamical model used.

De�ning Z

T

t

= (Z

t

; : : : ;Z

T

) we have Z

T

= Z

t�1

[ Z

T

t

. Therefore,

p(X

t

jZ

T

) = p(X

t

jZ

t�1

;Z

T

t

)

/ p(X

t

;Z

T

t

jZ

t�1

)

= p(Z

T

t

jX

t

)p(X

t

jZ

t�1

) by the independence of the Z

t

:

It is this rearrangement which allows the sample positions s

(n)

t

to remain �xed

after the smoothing step. Recall that the set fs

(n)

t

g is approximately a fair sample

from p(X

t

jZ

t�1

), so by replacing the original �

(n)

t

by smoothing weights

 

(n)

t

= p(Z

T

t

jX

t

= s

(n)

t

);

the set f(s

(n)

t

;  

(n)

t

)g, when normalised, will approximate p(X

t

jZ

T

) as required.

It is therefore the weights  

(n)

t

which the backward smoothing pass will calculate.

A recursive algorithm to calculate the densities p(Z

T

t

jX

t

) can be speci�ed

mathematically as follows:

p(Z

T

T

jX

T

) = p(Z

T

jX

T

)

p(Z

T

t+1

jX

t

) =

Z

p(Z

T

t+1

jX

t+1

)p(X

t+1

jX

t

) dX

t+1

p(Z

T

t

jX

t

) = p(Z

t

jX

t

)p(Z

T

t+1

jX

t

)

A concrete implementation requires the derivation of an approximation �

(n)

t

to

p(Z

T

t+1

jX

t

= s

(n)

t

). The integral is approximated as a sum:

p(Z

T

t+1

jX

t

= s

(n)

t

) � �

(n)

t

=

N

X

m=1

p(Z

T

t+1

jX

t+1

= s

(m)

t+1

)

p(X

t+1

= s

(m)

t+1

jX

t

= s

(n)

t

)

p(X

t+1

= s

(m)

t+1

jZ

t

)



where the correction

p(X

t+1

= s

(m)

t+1

jZ

t

) = 


(m)

t

=

N

X

k=1

�

(k)

t

p(X

t+1

= s

(m)

t+1

jX

t

= s

(k)

t

):

It is introduced because the s

(m)

t+1

are not distributed uniformly but are a sam-

At this stage a forward pass of standard Condensation has been performed,

storing a weighted sample-set f(s

(n)

t

; �

(n)

t

)g for each t = 1 : : : T .

1. Initialise smoothing weights  

(n)

T

:

 

(n)

T

= �

(n)

T

for n = 1 : : : N:

2. Iterate backwards over the sequence for t = T � 1 : : : 1:

(a) Calculate prediction probabilities:

�

(m;n)

t

= p(X

t+1

= s

(m)

t+1

jX

t

= s

(n)

t

) for m;n = 1 : : : N:

(b) Calculate correction factors:




(m)

t

=

N

X

k=1

�

(k)

t

�

(m;k)

t

for m = 1 : : : N:

(c) Approximate backward variables:

�

(n)

t

=

N

X

m=1

 

(m)

t+1

�

(m;n)

t




(m)

t

for n = 1 : : : N:

(d) Evaluate smoothing weights

 

(n)

t

= �

(n)

t

�

(n)

t

for n = 1 : : : N

then normalise multiplicatively so

P

 

(n)

t

= 1, and store with sample

positions as

f(s

(n)

t

;  

(n)

t

); n = 1 : : : Ng

Fig. 3. The backward stage of the two-pass smoothing algorithm for Con-

densation.

ple from p(X

t+1

jZ

t

), and without the correction this could bias the sum. This

method of correcting the estimate of an integral over sample-sets is borrowed

from the technique of importance sampling [9]. The backward pass of the two-

pass smoothing algorithm is shown in �gure 3. Note that the complexity of the
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Fig. 4. The unsmoothed output of a mixed-state Condensation algorithm

contains estimation errors. The mean of the y coordinate of the distribution is shown

in pixels, along with the mean-square variance around the curve in pixels

2

. Vertical bars

correspond to time-steps which are estimated to contain bounce events. The variance is

high when several hypotheses have high probabilities (see �gure 5).

algorithm is O(TN

2

) and that O(TN) storage is required for the sample-sets,

and O(N

2

) for the �

(m;n)

t

. This latter storage requirement can be avoided by

eliminating the �

(m;n)

t

from the algorithm and instead calculating each of the

p(X

t+1

= s

(m)

t+1

jX

t

= s

(n)

t

) twice. Since this calculation is typically the most

computationally expensive step of the algorithm, this tradeo� must be carefully

considered.

4 Applying the smoothing algorithms

First, the sequence-based smoothing algorithm was applied to a test sequence

from [6] which shows a ball bouncing against a backdrop of heavy clutter. The

ball moves under the action of a two-mode motion model, where the �rst mode

is constant acceleration due to gravity and the second mode corresponds to an

instantaneous bounce event during which the ball's vertical velocity is reversed.

The state vector X

t

now includes a discrete variable labelling which of the two

transition modes the model has just executed. The unsmoothed output of a

mixed-state Condensation tracker is depicted in �gure 4. At each time-step,

an MAP estimate is computed to determine which of the two modes the tracker

has executed, and the mean and variance of the y translation coordinate within

that mode are shown, along with an indication of which time-steps were esti-

mated to contain bounce events. The unsmoothed output is rather jittery due



Fig. 5. Smoothing eliminates false hypotheses. Before smoothing, multiple hy-

potheses can increase the variance of the distribution (top left) and shift the mean

away from the object position (top right). After running the sequence-based smoothing

algorithm the estimated variance has dropped to zero (see text) but the mean is now

correctly positioned (bottom). Detail from �eld 26 of the sequence is shown (see �g-

ures 4 and 6). The solid black line is the distribution mean, and the dotted white lines

are high-scoring samples, where the width of the sample outline is proportional to its

sample weight. A ball is being tracked against heavy clutter, and it is di�cult to dis-

tinguish in a single still image. The ball is located under the contour in the right-hand

image.

to the clutter, and the bounce events are not always accurately found. Figure 5

demonstrates the mis-estimation problem; the distribution has split into several

peaks, and although one peak is present at the true ball position, the other

peaks pull the distribution mean away from the desired value. After running

the sequence-based smoothing algorithm (�gure 6) most of the jitter has been

eliminated and the trajectory shows smooth parabolas between bounces. One

�eld has still been incorrectly estimated to contain a bounce. As discussed in

the previous section, the variance is estimated to be zero except over the last few

time-steps, since all the samples in the �nal distribution share the same history

until t = 60 �elds. Of course, this must be an under-estimate. Figure 5 shows

detail from �eld 26 of the sequence before and after smoothing.

The two-pass algorithm also successfully smooths the raw tracked output

(�gure 7), and now correctly determines the bounce events. Variance information

is also preserved by the two-pass �lter, and a small spread of samples in the

distribution can be seen in �gure 8. Note that neither smoothing algorithm

incorporates any separate machinery to estimate the mixed-state transitions.

These transition labels, forming part of the state-vector X

t

, are automatically

estimated along with the continuous state variables. Of course, the values of the

transition labels of s

(n)

t

and s

(m)

t�1

play a large part in determining the density

p(X

t+1

= s

(n)

t+1

jX

t

= s

(m)

t

) for the two-pass algorithm.
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Fig. 6. The sequence-based algorithm smooths away jitter. The mean of the y

coordinate of the distribution is shown in pixels, along with the mean-square variance

around the curve in pixels

2

. Vertical bars correspond to time-steps which are estimated

to contain bounce events, and a bounce is incorrectly estimated at �eld 4. The sequence-

based smoothing algorithm collapses the variance to zero for all but the last few time-

steps (see text).
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Fig. 7. The two-pass algorithm preserves sample variance while smoothing.

The mean of the y coordinate of the distribution is shown in pixels, along with the mean-

square variance around the curve in pixels

2

. Vertical bars correspond to modes which

are estimated to contain bounce events. The bounce events are correctly identi�ed.



Fig. 8. Smoothing eliminates false hypotheses. The two-pass smoothing algorithm

collapses the distribution down to a single peak (bottom), since the other peaks in the

raw data (top left) which cause a mis-estimation of the object position (top right), die

out in subsequent time-steps due to lack of support. Within the peak, however, variance

information is preserved, and so a small spread of samples is present around the mean

(�gure 7 indicates that the estimated mean-square variance around the curve is only a

few pixels). Detail from �eld 26 of the sequence is shown. The solid black line is the

distribution mean, and the dotted white lines are high-scoring samples, where the width

of the sample outline is proportional to its sample weight. A ball is being tracked against

heavy clutter, and it is di�cult to distinguish in a single still image. The ball is located

under the contour in the right-hand image.

Finally, the algorithms were applied to another test sequence showing a

hand moving over a cluttered desk. The hand translates and deforms in a 12-

dimensional linear shape-space. After approximately 30 �elds, the distribution

splits into two peaks (�gure 9), one of which is caused by clutter. The clut-

ter peak dominates for 10 �elds, causing a serious error in the estimated state,

although the true position is maintained as a smaller peak in the distribution

throughout, and the tracker recovers eventually. Figure 10 shows a graphs of the

y coordinate of the estimated mean of the distribution along with the variance

of the sample-set. The hand moves up smoothly from �eld 20 to �eld 40, but the

unsmoothed estimate is distracted between �elds 30{40, before rapidly regain-

ing the correct position at �eld 42. Note the very high variances, especially just

before the tracker recovers.

Figure 11 shows the result of applying the two-pass smoothing algorithm

to the hand sequence (the sequence-based algorithm provides similar state es-

timates and lower variance as before). When the entire sequence is taken into

account, it is apparent that the lower peak in �gure 9 corresponds to clutter, and

so only the trajectory corresponding to the actual hand position survives. Fig-

ure 12 graphs the estimated y coordinate and the mean-square curve variances

for the output of the two-pass smoother. As in the case of the ball, the jitter

on the state estimates is reduced, and the hand position is signi�cantly more

accurately determined compared with the raw Condensation algorithm. The



�eld 32 �eld 34

�eld 38 �eld 42

Fig. 9. Clutter causes temporary mis-estimation from unsmoothed data. The

unsmoothed state distribution has begun to diverge in �eld 32, and by �eld 34 the clutter

peak dominates. The multi-modality persists until �eld 38, after which the clutter peak

rapidly dies away, leaving a single peak around the object again by �eld 42. The solid

line is the distribution mean, and the dotted lines are high-scoring samples, where the

width of the sample outline is proportional to its sample weight.

variance of the sample-sets is also much reduced, although clearly towards the

end of the sequence the variance must increase to match that of the raw data.

5 Conclusions and future work

Both of the smoothing algorithms presented here signi�cantly aid the interpre-

tation of the output of a Condensation tracker. One of the major bene�ts of

the Condensation algorithm is that it allows the state density to split into

several peaks to transiently represent multiple hypotheses about object con�gu-

ration. This facility enables the tracker to follow the object while measurements

are ambiguous, keeping track of several possible trajectories until the true ob-
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Fig. 10. The unsmoothed hand data leads to estimation errors. The mean

of the y coordinate of the distribution is shown in pixels, along with the mean-square

variance around the curve in pixels

2

. Figure 9 shows the distribution splitting into two

peaks between �elds 32{34, and this is apparent from the variances. The clutter peak is

stronger, and causes the position to be mis-estimated by shifting the distribution mean.

Although the hand moves up steadily during �elds 30{40, the estimated position moves

down before suddenly recovering at �eld 42.

ject position can once more be con�dently established. During the period that

the distribution contains multiple peaks, however, existing implementations of

Condensation may report grossly misleading state estimates even though they

ultimately recover. This is because the state estimates are based on the mean

of the distribution, and thus implicitly assume a single peak. The application

of a smoothing algorithm concentrates the distribution into those areas which

are most likely given the entire tracking sequence, and the result is that peaks

caused by temporary clutter distractions tend to be greatly reduced in size. The

distribution is then more approximately uni-modal, and its mean is a good esti-

mator for the object con�guration. The forward{backward algorithm may also

prove very useful for learning mixed-state motion models. The algorithm can be

used as the basis of an E{M procedure analagous to the Baum-Welch algorithm

for learning Hidden Markov Model coe�cients, and this is the subject of current

research.

The two algorithms were tested on sequences where the state distribution pe-

riodically diverges to form several hypotheses and all but one of these competing

hypotheses ultimately dies out. Both algorithms successfully smoothed the test

sequences, with slightly improved accuracy from the two-pass algorithm, and

this suggests that for tasks of this kind the sequence-based algorithm should be

used, given its greater conceptual and computational simplicity. It is anticipated



�eld 32 �eld 34

�eld 38 �eld 42

Fig. 11. The smoothing algorithm correctly follows the hand. Compare with

�gure 9; after smoothing using the two-pass algorithm, all of the visible distribution is

concentrated on the correct peak. The solid line is the distribution mean after smoothing,

and the dotted lines are high-scoring samples, where the width of the sample outline is

proportional to its weight.

that the two-pass algorithm will come into its own as more complex distribu-

tions come to be used while tracking, and more complex state estimates are

required than a single con�guration at each time-step. A situation could arise

where the state density repeatedly split into competing hypotheses and then

merged again, for example if two similar objects were moving in front of one

another. The sequence-based algorithm would be very unlikely to preserve the

structure of the trajectories; instead it would tend to choose the most likely

single path. The two-pass algorithm, on the other hand, by computing a richer

representation of the past history, is more likely to keep all the likely hypotheses

and only reject genuine clutter. It may also be desirable to estimate sample-set

variances to detect periods of uncertainty, for example due to partial occlusion

of an object, and the two-pass algorithm is much better suited to this task.
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Fig. 12. The two-pass smoothing algorithm corrects estimation errors. Fig-

ure 11 shows that the two-pass algorithm eliminates the clutter peak which distracted

the standard tracker. Now the estimated state corresponds to the true hand position as

it moves steadily up the image from �eld 20 (compare with �gure 10). The variance of

the sample-set is also greatly reduced, although clearly at the end of the sequence the

variance increases to match that of the raw output. The mean of the y coordinate of the

distribution is shown in pixels, along with the mean-square variance around the curve

in pixels
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