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Abstract. Tracking research has diverged into two camps; low-level ap-

proaches which are typically fast and robust but provide little �ne-scale

information, and high-level approaches which track complex deforma-

tions in high-dimensional spaces but must trade o� speed against ro-

bustness. Real-time high-level systems perform poorly in clutter and ini-

tialisation for most high-level systems is either performed manually or

by a separate module. This paper presents a new technique to combine

low- and high-level information in a consistent probabilistic framework,

using the statistical technique of importance sampling combined with the

Condensation algorithm. The general framework, which we term Icon-

densation, is described, and a hand tracker is demonstrated which com-

bines colour blob-tracking with a contour model. The resulting tracker is

robust to rapid motion, heavy clutter and hand-coloured distractors, and

re-initialises automatically. The system runs comfortably in real time on

an entry-level desktop workstation.

1 Introduction

Current research into tracking has somewhat diverged into two camps | infor-

mally these can be distinguished as low-level vs. high-level. Low-level approaches

include \blob trackers" [24, 17] and systems which track sets of point features [22,

6]. Blob trackers perform low-level processing, for example colour segmentation,

usually on low-resolution images, and are fast and robust but convey little infor-

mation other than object centroid. Rigid object deformations can be tracked by

matching point correspondences frame-to-frame [21], but this relies on a rich set

of point features on the object of interest, and segmenting the sets of points into

coherent objects is challenging. An alternative is to use higher-level information,

whether by modelling objects with speci�c grey-level templates [2] which may

be allowed to deform [12], or with more abstract templates such as curved out-

lines [4, 5]. By including high-level motion models [4, 1] these trackers can follow

complex deformations in high-dimensional spaces, but there tends to be a trade-

o� between speed and robustness. Kalman-�lter based contour trackers which

run in real time are very susceptible to distraction by clutter, and correlation-

based systems are vulnerable to changes in object appearance and lighting, and



rapidly slow down as the space of deformations increases in complexity. Con-

tour trackers have been constructed which are highly robust to clutter [14, 18]

but only by sacri�cing real-time performance. The high-level approaches also

tend to economise on processing time by searching only those regions of the

image where the object is predicted to be. This diminishes robustness, and also

precludes natural extensions of the trackers to perform initialisation when the

object could be anywhere in the image. The di�culty of initialisation is com-

pounded when the dimension of the tracking space increases, since it is rapidly

impractical to perform an exhaustive search for the object.

This paper presents a framework, Icondensation, to bridge the gap between

low-level and high-level tracking approaches. An implementation is demonstrated

which uses colour segmentation to �nd skin-coloured blobs in a subsampled im-

age, and feeds this information to a contour tracker specialised for hands. The

techniques used, however, apply to the general sensor fusion problem of aug-

menting a tracker operating with one measurement modality to use information

from an auxiliary measurement source. Tracking is achieved using a Condensa-

tion �lter [14], extended to incorporate the statistical technique of \Importance

Sampling." [20] Importance sampling o�ers a mathematically principled way of

directing search, combining prediction information based on the previous object

position and motion with any additional knowledge which may be available from

auxiliary sensors. This combination confers robustness to temporary failures in

one of the measurement processes, and allows the tracker to take advantage of

the distinct qualities of di�erent information sources. In the hand-tracking sys-

tem presented here, for example, colour segmentation allows rapid initialisation

and robust tracking of gross motions, while the contour tracker gives �ne-scale

position and shape information as well as maintaining lock on the object when

colour blobs merge or momentarily disappear. Previous demonstrations of the

Condensation algorithm have been slower than real time, sometimes by a sig-

ni�cant margin [14, 15]. The hand-tracker presented here operates comfortably

in real time (30 or 60Hz) on an entry-level desktop workstation (SGI O2 R5000

180SC). The speed improvement is due partly to a reduction in the required

number of samples as a result of using importance sampling, and partly to a

careful implementation which is discussed in section 4.

2 Shape representation and sample sets

Suppose that an object's position, shape and velocity are encoded in a state

vector X 2 R

N

X

(which may, for example, represent the outline of a curve

using a low-dimensional parameterisation), and images observed at time t are

denoted Z

t

, with measurement history Z

t

= (Z

1

; : : : ;Z

t

). The Bayesian tech-

nique of factored sampling [20, 11] is a random-sampling method to approximate

a distribution p(XjZ) which applies when p(XjZ) is too complicated to sample

directly, but when the prior p(X) can be sampled, and the measurement density

p(ZjX) can be evaluated. Factored sampling proceeds by generating a set of N

samples fs

(n)

g from the prior p(X) and then assigning to each sample a weight



�

(n)

= p(ZjX = s

(n)

) corresponding to the measurement density. The �

(n)

are

normalised to sum to 1 and then the weighted set f(s

(n)

; �

(n)

)g represents an

approximation ~p(XjZ) to the desired posterior p(XjZ), where a sample is drawn

from ~p(XjZ) by choosing one of the s

(n)

with probability �

(n)

. As N ! 1

samples from ~p(XjZ) arbitrarily closely approximate fair samples from p(XjZ).

Moments of the posterior can also be estimated as

E [�(X)] �

N

X

n=1

�

(n)

�

�

s

(n)

�

: (1)

Factored sampling has been generalised to deal with temporal sequences [14,

9, 16] under a variety of names. The Condensation algorithm [14] was in-

troduced in the context of computer vision, and it incorporates learned motion

models to track deforming objects, represented by image-contours, through clut-

tered image sequences. This paper extends that work, however the importance

sampling framework applies equally well to the algorithms of [9, 16]. In the case

of temporal sequences, each time-step consists of an application of factored sam-

pling, where the prior p(X) is replaced by a prediction density p(X

t

jZ

t�1

) and

the sample-set obtained is time-stamped and denoted f(s

(n)

t

; �

(n)

t

)g. The predic-

tion density p(X

t

jZ

t�1

) is obtained by applying a dynamical model p(X

t

jX

t�1

)

to the output f(s

(n)

t�1

; �

(n)

t�1

)g of the previous time-step.

3 Importance sampling

In the standard formulation of the Condensation algorithm, positions of sam-

ples s

(n)

t

are �xed in the prediction stage using only the previous approximation

to the state density f(s

(n)

t�1

; �

(n)

t�1

)g and the motion model p(X

t

jX

t�1

). The por-

tions of state-space (and thus the image Z

t

) which are to be examined in the

measurement stage are therefore determined before any measurements are made.

This is appropriate when the sample-set approximation to the state density is

accurate. In principle, as the state density evolves over time, the random nature

of the motion model induces some non-zero probability everywhere in state-space

that the object is present at that point. With a su�ciently good sample-set ap-

proximation this would tend to cause all areas of state-space to lie near some

samples, so even motions which were extremely unlikely given the model would

be detected, and could therefore be tracked. In practice, however, the �nite

nature of the sample-set approximation means that all of the samples will be

concentrated near the most likely object positions. There may be several such

clusters corresponding to multiple hypotheses, but in general each cluster will be

fairly localised, which in fact is precisely the behaviour which permits an e�cient

discrete representation of high-dimensional state spaces. The result is that large

areas of state-space contain no samples at all. In order to robustly track sudden

movements the process noise of the motion model must be arti�cially high, thus

increasing the extent of each predicted cluster in state-space. To populate these

larger clusters with enough samples to permit e�ective tracking, the sample-set



size must be increased, and the algorithm therefore runs more slowly. Various

techniques have been proposed to improve the e�ciency of the representation

in random sampling �lters [9, 8] but to our knowledge none have been advanced

which draw on information available from alternative sensors.

Importance sampling [20] is a technique developed to improve the e�ciency of

factored sampling. It applies when auxiliary knowledge is available in the form of

an importance function g(X) describing which areas of state-space contain most

information about the posterior. The idea is then to concentrate samples in those

areas of state-space by generating sample positions s

(n)

from g(X) rather than

sampling from the prior p(X). The desired e�ect is to avoid as far as possible

generating any samples which have low weights, since they are \wasted" in the

factored sampling representation as they provide a negligible contribution to the

posterior. A correction term f=g must be added to the sample weights giving

�

(n)

=

f(s

(n)

)

g(s

(n)

)

p(ZjX = s

(n)

) where f(s

(n)

) � p(X = s

(n)

)

to compensate for the uneven distribution of sample positions. This correction

term ensures that, for large N , importance sampling has no e�ect on the con-

sistency of the approximation which ~p(XjZ) makes to the posterior. Any im-

portance function could be chosen (subject to some weak constraints) and if N

is su�ciently large then ~p(XjZ) will be a good approximation to p(XjZ). The

purpose of importance sampling is to reduce the variance of the estimates for a

given N and so improve the accuracy of ~p(XjZ) when N is small. Since samples

are drawn from g(X) it plays the part of a probability density, but note that

it does not necessarily correspond to the distribution of any particular random

variable.

A typical Bayesian approach to sensor fusion would be to combine measure-

ments from the various sensors in the representation of Z

t

, weighted according to

their inverse variances. This is only possible, however, when the statistical depen-

dencies between the measurements are understood, and in practice it is often as-

sumed that sensors produce independent measurements. This paper is concerned

with combining measurements made with di�erent modalities but from the same

underlying image, so it is expected that such an independence assumption would

be invalid. Instead of the traditional sensor fusion approach, therefore, impor-

tance sampling allows measurements to be combined in a Bayesian framework

even when no knowledge at all is available about their dependence. The tradeo�

is that the symmetry between sensors is broken, since the measurements used to

de�ne the importance function are not included in the overall model, and this

may result in some genuine independent information being discarded.

Importance sampling can be applied in the context of Condensation sam-

pling, and we denote this extension Icondensation. Now the importance func-

tion at time t is denoted g

t

(X

t

). In Condensation, sample positions are drawn



from the density

f

t

(s

(n)

t

) � ~p(X

t

= s

(n)

t

jZ

t�1

)

=

N

X

j=1

�

(j)

t�1

p(X

t

= s

(n)

t

jX

t�1

= s

(j)

t�1

): (2)

Note that while the set f(s

(n)

t

; �

(n)

t

)g provides a discrete point-representation of a

distribution, the prediction density ~p(X

t

jZ

t�1

) is a mixture of continuous density

kernels shaped by p(X

t

jX

t�1

), representing the dynamical model. Instead of

sampling from ~p(X

t

jZ

t�1

), samples s

(n)

t

can instead be drawn from some g

t

(X

t

)

and then the weights need to be rede�ned as

�

(n)

t

=

f

t

(s

(n)

t

)

g

t

(s

(n)

t

)

p(Z

t

jX

t

= s

(n)

t

): (3)

The e�ect of the correction ratio is to preserve the information about motion

coherence which is present in the dynamical model. Although the samples are

positioned according to g

t

, the distribution approximated by f(s

(n)

t

; �

(n)

t

)g still

generates p(X

t

jZ

t

). Importance sampling is again intended to improve the ef-

�ciency of the sample-set representation, but does not change the probabilistic

model. It should be noted that (2) imposes a restriction on the form of dynamical

model which can be used; for Condensation it is enough to be able to sam-

ple from p(X

t

jX

t�1

) but in the Icondensation algorithm this density must

also be evaluated. Existing implementations of Condensation [14, 15, 13] use

Gaussians or mixtures of Gaussians for this process density, and so evaluation is

straightforward. The sum in (2) must be evaluated in (3) for each n = 1; : : : ; N ,

which changes the complexity of the algorithm from O(N)

?

to O(N

2

). While

this is a theoretical disadvantage, it has little e�ect in practice, since the time

expended on the calculation of (2) in an e�cient implementation, for practical

values of N , is dwarfed by other stages of the computation.

In practice the importance function g

t

will derive from an imperfect mea-

surement process, so it may omit some likely peaks of p(Z

t

jX

t

). It is therefore

prudent to generate some samples using standard factored sampling and some

by importance sampling using g

t

. As long as ~p(X

t

jZ

t�1

) and g

t

do not simulta-

neously fail to predict the object state, tracking will succeed.

It may also be advantageous to augment the dynamical model to include

some probability q of reinitialisation | repositioning the object according to a

prior which is independent of past history Z

t

. This allows a tracker to lock on to

an object entering the scene, or rediscover an object which has been lost due to

gross failures of measurements, perhaps because the object moved while it was

entirely occluded. The amended model is of the form

~p

0

(X

t

jZ

t�1

) = (1� q)~p(X

t

jZ

t�1

) + qp(X

t

)

?

It was claimed in [14] that Condensation was O(N logN), however by choosing

base samples as described in section 4.4 of this paper the complexity is reduced to

O(N).



where p(X

t

) is the required initialisation prior. This is an application of mixed-

state Condensation [15] with two discrete states, and in later sections the

model will be augmented to include a further two states. A mixed-state model

can be included in the factored sampling scheme by choosing with probability

1� q to generate samples as before (using importance sampling with probability

r and standard factored sampling with probability 1�q�r) and with probability

q to generate s

(n)

t

by sampling directly from p(X

t

). In the absence of another

initialisation prior, the importance function, suitably normalised, can be used,

so p(X

t

) / g

t

. A complete sampling algorithm is shown in �gure 1.

Iterate

From the \old" sample set f(s

(n)

t�1

; �

(n)

t�1

); n = 1; : : : ; Ng at time-step t� 1, con-

struct a \new" sample set f(s

(n)

t

; �

(n)

t

); n = 1; : : : ; Ng for time t. The importance

function g

t

(X

t

) for time t is assumed to be known at this stage.

Construct the n

th

of N new samples as follows:

1. Choose the sampling method by generating a random number � 2 [0; 1),

uniformly distributed.

2. Sample from the prediction density ~p

0

(X

t

jZ

t�1

) as follows:

(a) If � < q use the initialisation prior. Choose s

(n)

t

by sampling from g

t

(X

t

)

and set the importance correction factor �

(n)

t

= 1.

(b) If q � � < q+r use importance sampling. Choose s

(n)

t

by sampling from

g

t

(X

t

) and set �

(n)

t

= f

t

(s

(n)

t

)=g

t

(s

(n)

t

), where

f

t

(s

(n)

t

) =

N

X

j=1

�

(j)

t�1

p(X

t

= s

(n)

t

jX

t�1

= s

(j)

t�1

):

(c) If � � q + r use standard Condensation sampling. Choose a base

sample s

(i)

t�1

with probability �

(i)

t�1

, then choose s

(n)

t

by sampling from

p(X

t

jX

t�1

= s

(i)

t�1

) and set �

(n)

t

= 1.

3. Measure and weight the new position in terms of the image data Z

t

and the

importance sampling correction term:

�

(n)

t

= �

(n)

t

p(Z

t

jX

t

= s

(n)

t

)

then normalise multiplicatively so

P

n

�

(n)

t

= 1 and store as f(s

(n)

t

; �

(n)

t

)g.

Fig. 1. Icondensation: Condensation with importance sampling and reini-

tialisation.



Fig. 2. Colour segmentation allows the detection of skin-coloured blobs.

Circles on the input frame (left) show the centres of blobs detected using colour-

segmentation and a ood-�ll. The output of the colour discriminant on a 32 � 24

pixel subsampled �eld of the original image is shown scaled (middle) so that white

corresponds to a high probability of skin-colour. The output after convolution and blob-

detection (right) shows white areas belonging to blobs.

4 Experiments with a real-time hand-tracker

The framework of Icondensation applies to any parametric representation of

objects and their motion, and any form of importance function g

t

. The remainder

of this paper presents a speci�c implementation of a real-time hand tracker, com-

bining blob-tracking with a contour model. First, a crude colour-segmentation

technique is described which is used to construct the importance function g

t

(X

t

).

4.1 Finding skin-coloured blobs

Previous researchers [17, 10] have noted that human skin can be e�ectively dis-

tinguished in a typical o�ce scene using colour segmentation, and so this method

is adopted here. Training images of hands are used to construct a colour discrim-

inant based on a Gaussian prior in (r; g; b) space which expresses the probability

that a given pixel is skin-coloured. The prior is clipped with an intensity thresh-

old to ensure that very dark pixels are not classi�ed as skin. Blob-detection is

performed by taking the input image and subsampling to give 32 � 24 pixels

per �eld, then evaluating the colour discriminant for each pixel. A 2 � 2 mov-

ing block average is applied to the image to reduce noise, and then pixels are

grouped using a ood-�ll with hysteresis [7]. An example image and the seg-

mented output is shown in �gure 2. The technique has been found to be very

e�ective in separating skin colour from background, and works over the variation

in lighting conditions from day to night in our o�ce. Let B be the number of

blobs detected, then the mean of each blob is computed as a coordinate b

0

k

in

the original image, and a two-dimensional importance function ~g

t

is de�ned to

be a mixture of Gaussians over R

2

~g

t

(x

trans

) =

B

X

k=1

�

k

N(b

k

; �

B

)



1 2

3 4

Fig. 3. The hand-tracker uses a four-state discrete/continuous motion

model. States 1 and 2 denote the left and right hand respectively, and states 3 and 4

correspond to initialising a sample with either the left or the right model.

where b

k

= b

0

k

+
�
x

B

, and
�
x

B

and �

B

are the mean and covariance respectively

of the o�set from the blob position to the centroid of the contour describing the

hand. These are learned by following a user's hand using a contour tracker and

comparing the output of the blob segmentation with the centroid of the tracked

contour. The mixture weights �

k

will be discussed in the next section. A hybrid

sampling scheme is now required since the importance function is de�ned only

over translations, and this is outlined below.

4.2 A contour tracker for hands

A discrete-time second-order motion model is used to describe the hand, giving

an augmented state-space

X

t

=

�

x

t

x

t�1

�

where x

t

= (x

t

; y

t

; �

t

; r

t

; �

t

)

T

and x

t

is a non-linear representation of a Euclidean similarity transform applied

to a template
�
x. The extra parameter �

t

is a discrete label which determines

whether the template is left- or right-handed |
�
x is reected about the y-axis

for the right hand. The left{right parameter �

t

is constant according to the

motion model, and can only change as a result of a reinitialisation, and so the

tracker e�ectively uses a four-state model (tracking or reinitialising either the

left or the right hand) shown in �gure 3. Note that the contour-based object

representation allows accurate tracking of hand rotation and scaling as �

t

and

r

t

vary, which can be problematic for traditional correlation-based techniques.

By the nature of the second-order representation, the lower half of X

t

is found

deterministically from X

t�1

, so we will refer interchangeably to p(X

t

) and p(x

t

)

with slight abuse of notation.

The motion model is a second-order auto-regressive process (ARP) [3] where

each of the four dimensions of the similarity is modelled by an independent



one-dimensional oscillator. The oscillators are speci�ed by parameters de�ning

a damping constant �, a natural frequency f and a root-mean-square average

displacement �. These parameters can be used to determine the ARP model in

one dimension x

t

= a

2

x

t�2

+ a

1

x

t�1

+ b!

t

where !

t

is Gaussian noise drawn

from N(0; 1), a

1

, a

2

and b are given by [3]

a

2

= � exp(�2��); a

1

= 2 exp(���) cos(2�f�)

b = �

s

1� a

2

2

� a

2

1

� 2

a

2

a

2

1

1� a

2

and � is the time-step length in seconds (so � = 1=30 s for NTSC frame-rate).

Sensible default parameters for the oscillators are chosen by hand.

As explained in section 4.1, the importance function ~g

t

is de�ned only over

the space of x{y translations, being the output of a crude blob-tracker. The

state-space decomposes into a translation subspace x

T

t

= (x

t

; y

t

)

T

and a de-

formation subspace x

D

t

= (�

t

; r

t

; �

t

)

T

. Modi�cations to steps 2(a) and 2(b) of

�gure 1 can now be made to implement a hybrid sampling scheme. For initial-

isation in step 2(a), the translation component s

(n)T

t

is sampled from ~g

t

and

the deformation component s

(n)D

t

is sampled from a �xed prior p

D

(x

D

) which

is taken to be Gaussian in �

t

and r

t

and assigns equal probabilities for left and

right to �

t

, then s

(n)

t

= s

(n)T

t

�s

(n)D

t

. The hybrid importance sampling step 2(b)

proceeds as follows. First generate a sample s

0

t

(n)

= s

0

t

(n)T

� s

0

t

(n)D

using stan-

dard Condensation sampling as in step 2(c). Then choose s

(n)T

t

by sampling

from ~g

t

and set s

(n)

t

= s

(n)T

t

� s

0

t

(n)D

. Finally the importance correction factor

�

(n)

t

is replaced by �

(n)T

t

= f

T

t

(s

(n)

t

)=~g

t

(s

(n)

t

), where

f

T

t

(s

(n)

t

) =

N

X

j=1

�

(j)

t�1

p(X

T

t

= s

(n)T

t

jX

t�1

= s

(j)

t�1

):

It remains to specify the mixture weights �

k

for g

t

. One reasonable choice

is to set �

k

= 1=B, and apportion samples equally in the vicinity of each blob.

Since the motivation for importance sampling is to avoid generating samples

with low weights, it may be preferable to increase �

k

for blobs which are near

to many predicted sample positions. This can be done approximately by setting

�

k

/ f

t

(b

k

), and later results are produced using these weights.

The prior distribution over translation for reinitialisation is chosen to be

the distribution obtained by sampling from g

t

with �

k

= 1=B for all k. The

parameters � and r are chosen from a suitable Gaussian prior density, with

parameters set by hand, and � has an equal chance of being left- or right-handed.

When B = 0 no importance or reinitialisation samples are generated, and all of

the computing time is spent on standard Condensation samples.

4.3 The measurement process

Having detailed the dynamical model it remains to specify the measurement

density p(Z

t

jX

t

). This is assumed to be constant over time and dependent only



on the current con�guration, so

p(Z

t

jX

t

) � p(Zjx):

Recall that x speci�es the outline in the image of a B-spline curve. The measure-

ment density is approximated by examining a set of points z

m

for m = 1 : : :M

which lie on the curve outline, where the normal to the curve at z

m

is n

m

. First

of all, edge-operator convolutions are taken at z

m

in the x and y directions,

and the dot product of these is taken with the normal direction n

m

to �nd a

directed edge strength which is scaled and interpreted directly as a log prob-

ability p

m

. When the edge strength is above a certain threshold an additional

colour calculation is made to examine the pixels just inside the contour. This

increases p

m

when the area inside the curve scores highly according to the skin-

colour discriminant, and decreases it when it scores poorly. Independence of the

measurement points is assumed, so the density is given by

log p(Zjx) = const +

X

m

p

m

:

Constants are set manually, and the density is somewhat ad hoc; determining

a more rigorous measurement density, possibly learned from training images, is

deferred to future research.

4.4 Speed enhancements

Importance sampling has been presented as a mechanism to use complementary

sources of visual information to choose an e�ective set of positions in state-

space for a �nite set of N samples. Given the constraint of real-time operation,

a certain amount of care in the detailed implementation is necessary in order to

maximise N . Much of this consists simply of standard code optimisation, but

some parts of the algorithm can be redesigned for greater e�ciency.

Base samples s

(i)

t�1

are used both in standard Condensation and for the

hybrid importance sampling. These are chosen according to the �

(i)

t�1

and this

selection can be done e�ciently using cumulative probabilities c

(i)

t�1

=

P

i

j=1

�

(i)

t�1

.

Quantising the cumulative probabilities

~c

(i)

t�1

= bc

(i)

t�1

Nc

suggests the following algorithm for generating samples which eliminates the

O(logN) binary search stage in [14].

initialise: i = 1. for n = 1 : : :N

while (~c

(i)

t�1

< n) i++

generate s

(n)

t

by sampling from p(X

t

jX

t�1

= s

(i)

t�1

).

Since predictions from a given base sample are made consecutively this also

o�ers a saving in calculating the deterministic portion of the prediction, which

need only be done once per base sample. Practical experience shows that this



can lead to signi�cant economy, since typically only 10% of samples may have

high enough weight to be used as a base.

Software pro�ling shows that most of the tracker's computation is expended,

as might be expected, on calculating the measurement density. It has been found

that a signi�cant speed improvement can be gained by presorting the mea-

surement points in raster order before performing the convolution and colour-

segmentation calculations of section 4.3. This has the advantage, as for the base

samples, that identical measurement points are processed consecutively, which

cuts down on the number of convolutions (typically the number of distinct mea-

surement points is just over half of the total number of points). Clearly, per-

forming the sort generates a large overhead, and in fact pro�ling reveals that

typically 30% of time is spent sorting compared with about 50% making the

measurements. This might seem to almost cancel the performance improvement

from sorting, however the speedup on an SGI O2 is signi�cantly greater than im-

plied by these numbers, since the cache behaviour of evaluating points in raster

order is much more benign than if the points are presented unsorted.

5 The tracker in operation

The hand-tracker has been implemented on an SGI O2 R5000 SC180 entry-level

desktop workstation. The results shown were produced using N = 400 samples,

which allows the tracker to run comfortably in real-time (30Hz, using every

other NTSC �eld). The number of samples can be increased to approximately

N = 575 before any frames are dropped. Acceptable performance is obtained

with N = 150 samples, and this runs comfortably at the �eld-rate of 60Hz,

although there is no noticeable bene�t from using the additional �elds. The

main observed di�erences when using a smaller number of samples are a slight

jitter when the hand is stationary and a longer time taken before the system

reinitialises. As the number of samples is reduced below N = 150 the tracker

begins to be distracted by clutter, although reinitialisation still functions to

recover from these distractions.

The initialisation behaviour of the tracker is shown in �gure 4. Initially the

hand on the left is being tracked, and the spatial coherence inherent in the mo-

tion model means that the other blobs in the scene do not distract the tracker.

When the thumb and fore�nger are retracted, the shape no longer �ts the tem-

plate as accurately, and tracking reinitialises on the other hand within half a

second. This behaviour corresponds to state transitions 2 ! 3 ! 1 in �gure 3.

Figure 5 (a) demonstrates successful tracking at high speed, with interlace shown

to indicate image velocities. Even if the hand makes a sudden movement which is

not predicted by the motion model, the blob tracker will detect the new position,

and importance samples will be generated in the vicinity of the hand allowing

the motion to be tracked. Figure 5 (b) shows the advantage of using outline in-

formation as well as colour blob segmentation. The hands are adjacent, so their

blobs merge, yet tracking continues to distinguish between the hands.



(a) (b)

(c) (d)

Fig. 4. The tracker reinitialises when one hypothesis takes precedence over

another. While the user's right hand �ts the template well (a) the motion coherence

in the dynamical model ensures that the tracker remains locked on (discrete state 2 in

�gure 3). When the shape no longer �ts the template (b) the probability of reinitialising

to another hypothesis increases. After 5 frames (1/6 s) the tracker has switched to

the neighbourhood of the left hand, selecting the left-handed template (discrete state 3

followed by 1), and another 5 frames later, a total of 1/3 s from the time that the

right hand no longer �t the template, the tracker has locked on to the user's left hand

(discrete state 1). Detected blobs are shown as circles, and N=400 samples are used.

6 Extending the tracker for multiple users

The hand tracker described so far is specialised to a single hand shape, encoded

in the template
�
x. This requires the user's hand to be held fairly rigidly in

the template pose, and necessarily means that some users' hands will �t the

template better than others'. The main problem with an ill-�tting template

is slow re-initialisation, but it also increases the chance of clutter distractions.

It would be desirable, therefore, to allow some variation in
�
x. A shape-space

of hand-deformations was therefore established by using Principal Components

Analysis (PCA) on sequences of images collected from several subjects [4]. Each

subject placed his or her left hand in a reference position and orientation, with



(a) (b)

Fig. 5. Tracking is robust to high-speed motion and failures of colour seg-

mentation. Both �elds of a frame are shown in (a) and interlacing artifacts demon-

strate the rapid translation of the hand. When the hands move close to each other in

(b), their colour-segmentation blobs merge, giving a mean value (circle) between the

hands. The contour tracker continues to follow the left hand using motion coherence

and edge information. The tracker is using N=400 samples.

thumb and fore�nger outstretched, and then made small movements to represent

the variation of poses in which that user's hand will be presented to the system.

These movements were recorded by a B-spline tracker, the spline positions from

the separate sequences were concatenated, and PCA was used to �nd a six-

dimensional space of deformations. In the interests of real-time tracking, it is not

desirable to increase the dimension of x

t

from 4 continuous Euclidean similarity

parameters to 10 for rigid transformations plus deformation.

The solution adopted was to run two entirely separate trackers, one in the

Euclidean similarity space as before, and one in a separate six-dimensional de-

formation space with N

D

samples and parameter y

t

, so that
�
x =

�
x

0

+ Wy

t

where
�
x

0

and W were estimated by PCA. Since y

t

is expected to vary slowly,

only a small number of samples need be used in the deformation tracker, and

good results are obtained using N

D

= 50 samples. At each time-step, the track-

ers are run consecutively. First of all y

t

is held �xed at y

t

=
^
y

t�1

to establish

�
x

t

=
�
x

0

+W
^
y

t�1

. The Euclidean transformation tracker is then run, exactly as

before, and an estimated Euclidean vector
^
x

t

is calculated from (1). Now the

Euclidean transformation is held �xed at x

t

=
^
x

t

and the deformation tracker

is run to estimate the new sample-set distribution for y

t

from which
^
y

t

can

be estimated, again using (1). This procedure is not entirely satisfactory, since

it prevents a meaningful probabilistic interpretation of the state densities. It

would be preferable to combine the estimation of deformation and rigid motion

in a consistent Bayesian framework while keeping the economy of computation,

and this is discussed briey in section 7. Despite this caveat, results using the

two-tracker system are promising. The deformation-space tracker was run as a

standard Condensation tracker using dynamics learned from the hand-shape



Fig. 6. The deformation tracker accommodates di�erent hands. Columns show

di�erent users. The lower images show tracked output approximately a second after the

hand was introduced into the scene. The left-hand user was included in hand-shape

training data, the other two were not. In this example N=400 for the Euclidean simi-

larity tracker and N

D

=50 for the deformation tracker.

training sequences [4, 14]. The shape rapidly deforms to �t a hand as it enters the

scene, and �gure 6 shows that the tracker adapts to di�erent hands as required.

7 Conclusions and future work

The hand-tracking system presented in this paper has proved to be extremely

robust and agile over a wide range of desk clutter, for every test user who has so

far tried it (about 10 people). Since it runs comfortably in real time, it o�ers the

exciting possibility of being used as the user-interface back-end to drive some

kind of interactive package. Perhaps as robust yet detailed trackers such as this

are developed, the promise of the digital desk [23] will at last begin to be realised.

In the last few years real-time tracking has rapidly progressed, and expertise

has been developed in exploiting a wide range of methodologies. Icondensa-

tion o�ers a bridge between some competing approaches, and thus there exists

considerable scope for building on the work presented here. Hand-tracking is a

very specialised area since colour segmentation of skin is so accurate. It may be

possible to build similar systems using other low-level approaches such as motion

segmentation and image-di�erencing, opening the framework to other applica-

tion domains. Within the hand-tracking system certain problems remain. Before



1 2

3 4
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Fig. 7. A �ve-state model could encompass the possibility that no hand is

present. States 1 and 2 denote tracking the left and right hand, respectively, states 3

and 4 correspond to initialising a sample to start tracking with either the left or the

right model, and state 5 is entered when no hand is present in the scene.

the system can be used as an input device it will probably be necessary to devise

a robust measure to determine whether or not the hand is in the scene, possibly

using a contour discriminant [19]. The discrete model would then be expanded

to include a �fth state (�gure 7), denoting the event that no hand is present. A

better method of accommodating deformations of the hand-template may also

be possible. It is proigate to allow an entire 6-dimensional linear space to repre-

sent hand deformations, since most of the space consists of shapes which are very

unlike a hand. It may be possible to collect a large number (perhaps 20{100)

of template shapes, and include them as discrete states in the model, relying

on each user's hand to be close to one of the example templates. Alternatively

it may be possible to specify a non-linear parameterisation of the deformations

which is e�cient enough to allow the deformation space to be included directly

with the Euclidean similarity parameters in the main tracker.

Finally it is worth noting that the combination of low-level and high-level ap-

proaches presented here may be applicable to problems which have been tackled

using multi-resolution techniques. Importance sampling allows measurements to

be combined even when no knowledge is available about their statistical depen-

dence, and therefore may be applicable to other tasks where measurements are

available at di�erent granularities, but their dependence is poorly understood.
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