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The problem of tracking curves in dense visual clutter is

a challenging one. Trackers based on Kalman �lters are of limited use;

because they are based on Gaussian densities which are unimodal, they

cannot represent simultaneous alternative hypotheses. Extensions to the

Kalman �lter to handle multiple data associations work satisfactorily in

the simple case of point targets, but do not extend naturally to con-

tinuous curves. A new, stochastic algorithm is proposed here, the Con-

densation algorithm | Conditional Density Propagation over time. It

uses `factored sampling', a method previously applied to interpretation

of static images, in which the distribution of possible interpretations is

represented by a randomly generated set of representatives. The Con-

densation algorithm combines factored sampling with learned dynam-

ical models to propagate an entire probability distribution for object

position and shape, over time. The result is highly robust tracking of

agile motion in clutter, markedly superior to what has previously been

attainable from Kalman �ltering. Notwithstanding the use of stochastic

methods, the algorithm runs in near real-time.

1 The problem of tracking curves in clutter

The purpose of this paper is to establish a stochastic framework for tracking

curves in visual clutter, and to propose a powerful new technique | the Con-

densation algorithm. The new approach is rooted in strands from statistics,

control theory and computer vision. The problem is to track outlines and features

of foreground objects, modelled as curves, as they move in substantial clutter,

and to do it at, or close to, video frame-rate. This is challenging because elements

in the background clutter may mimic parts of foreground features. In the most

severe case, the background may consist of objects similar to the foreground ob-

ject, for instance when a person is moving past a crowd. Our framework aims to

dissolve the resulting ambiguity by applying probabilistic models of object shape

and motion to analyse the video-stream. The degree of generality of these mod-

els must be pitched carefully: su�ciently speci�c for e�ective disambiguation

but su�ciently general to be broadly applicable over entire classes of foreground

objects.

1.1 Modelling shape and motion

E�ective methods have arisen in computer vision for modelling shape and mo-

tion. When suitable geometric models of a moving object are available, they can



be matched e�ectively to image data, though usually at considerable computa-

tional cost [17, 26, 18]. Once an object has been located approximately, tracking

it in subsequent images becomes more e�cient computationally [20], especially

if motion is modelled as well as shape [12, 16]. One important facility is the mod-

elling of curve segments which interact with images [29] or image sequences [19].

This is more general than modelling entire objects but more clutter-resistant

than applying signal-processing to low-level corners or edges. The methods to

be discussed here have been applied at this level, to segments of parametric B-

spline curves [3] tracking over image sequences [8]. The B-spline curves could,

in theory, be parameterised by their control points. In practice this allows too

many degrees of freedom for stable tracking and it is necessary to restrict the

curve to a low-dimensional parameter x, for example over an a�ne space [28, 5],

or more generally allowing a linear space of non-rigid motion [9].

Finally, probability densities p(x) can be de�ned over the class of curves

[9], and also over their motions [27, 5], and this constitutes a powerful facility

for tracking. Reasonable default functions can be chosen for those densities.

However, it is obviously more satisfactory to measure the actual densities or

estimate them from data-sequences (x

1

; x

2

; : : :). Algorithms to do this assuming

Gaussian densities are known in the control-theory literature [13] and have been

applied in computer vision [6, 7, 4].

1.2 Sampling methods

A standard problem in statistical pattern recognition is to �nd an object pa-

rameterised as x with prior p(x), using data z from a single image. (This is a

simpli�ed, static form of the image sequence problem addressed in this paper.)

In order to estimate x from z, some information is needed about the conditional

distribution p(zjx) which measures the likelihood that a hypothetical object con-

�guration x should give rise to the image data z that has just been observed. The

data z could either be an entire grey-level array or a set of sparse features such

as corners or, as in this paper, curve fragments obtained by edge detection. The

posterior density p(xjz) represents all the knowledge about x that is deducible

from the data. It can be evaluated in principle by applying Bayes' rule to obtain

p(xjz) = kp(zjx)p(x) (1)

where k is a normalisation constant that is independent of x. In the general case

that p(zjx) is multi-modal p(xjz) cannot be evaluated simply in closed form:

instead iterative sampling techniques can be used.

The �rst use of such an iterative solution was proposed by Geman and Geman

[11] for restoration of an image represented by mixed variables, both continuous

(pixels) and discrete (the `line process'). Sampling methods for recovery of a

parametric curve x by sampling [24, 14, 25] have generally used spatial Markov

processes as the underlying probabilistic model p(x). The basic method is fac-

tored sampling [14]. It is useful when the conditional observation probability

p(zjx) can be evaluated pointwise and sampling it is not feasible and when,

conversely, the prior p(x) can be sampled but not evaluated. The algorithm



estimates means of properties f(x) (e.g. moments) of the posterior p(xjz) by

�rst generating randomly a sample (s

1

; s

2

; : : :) from the density p(x) and then

weighting with p(zjx):

E[f(x)jz] �

P

N

n=1

f(s

n

)p(zjs

n

)

P

N

n=1

p(zjs

n

)

(2)

where this is asymptotically (N ! 1) an unbiased estimate. For example, the

mean can be estimated using f(x) = x and the variance using f(x) = xx

T

.

If p(x) is a spatial Gauss-Markov process, then Gibbs sampling from p(x) is

used to generate the random variates (s

1

; s

2

; : : :). Otherwise, for low-dimensional

parameterisations as in this paper, standard, direct methods can be used for

Gaussians

1

| we use rejection sampling [21]. Note that, in the case that the

density p(zjx) is normal, the mean obtained by factored sampling would be

consistent with an estimate obtained more conventionally, and e�ciently, from

linear least squares estimation. For multi-modal distributions which cannot be

approximated as normal, so that linear estimators are unusable, estimates of

mean x by factored sampling continue to apply.

Sampling methods have proved remarkably e�ective for recovering static ob-

jects, notably hands [14] and galaxies [24], in clutter. The challenge addressed

here is to do this over time, estimating x(t) from time-varying images z(t).

1.3 Kalman �lters and data-association

Spatio-temporal estimation, the tracking of shape and position over time, has

been dealt with thoroughly by Kalman �ltering, in the relatively clutter-free

case in which p(zjx) can satisfactorily be modelled as Gaussian [16, 12, 23] and

can be applied to curves [27, 5]. These solutions work relatively poorly in clutter

which easily `distracts' the spatio-temporal estimate x̂(t). With simple, discrete

features such as points or corners combinatorial data-association methods can

be e�ective, including the `JPDAF' [2, 22] and the `RANSAC' algorithm [10].

They allow several hypotheses about which data-elements `belong' to the tracked

object to be held simultaneously, and less plausible hypotheses to be progres-

sively pruned. Data association methods do not, however, apply to moving curves

where the features are continuous objects, and a more general methodology is

demanded.

1.4 Temporal propagation of conditional densities

The Kalman �lter as a recursive linear estimator is a very special case, applying

only to Gaussian densities, of a more general probability density propagation

process. In continuous time this can be described in terms of di�usion [15],

governed by a `Fokker-Planck' equation [1], in which the density for x(t) drifts

and spreads under the action of a stochastic model of its dynamics. The random

component of the dynamical model leads to spreading | increasing uncertainty

1

Note: the presence of clutter causes p(zjx) to be non-Gaussian, but the prior p(x)

may still happily be Gaussian, and that is what will be assumed in our experiments.
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Fig. 1. Probability density propagation. Propagation is depicted here as it occurs

over a discrete time-step. There are three phases: drift due to the deterministic compo-

nent of object dynamics; di�usion due to the random component; reactive reinforcement

due to measurements.

| while the deterministic component causes a drift of the mass of the density

function, as shown in �gure 1. The e�ect of external measurements z(t) is to

superimpose a reactive e�ect on the di�usion in which the density tends to peak

in the vicinity of measurements.

In the simple Gaussian case, the di�usion is purely linear and the density

function evolves as a Gaussian pulse that translates, spreads and is reinforced,

remaining Gaussian throughout. The Kalman �lter describes analytically ex-

actly this process. In clutter, however, when measurements have a non-Gaussian,

multi-modal conditional distribution, the evolving density requires a more gen-

eral representation. This leads to a powerful new approach to tracking, developed

below, in which a sparse representation of the density for x(t) is carried forward

in time. No mean position or variance is computed explicitly, though they and

other properties can be computed at any time if desired.

2 Discrete-time propagation of state density

For computational purposes, the propagation process must be set out in terms

of discrete time t. The state of the modelled object at time t is denoted x

t

and

its history is x

t

= (x

1

; x

2

; : : : ; x

t

). Similarly the set of image features at time t is

z

t

with history z

t

= (z

1

; : : : ; z

t

). Note that no functional assumptions (linearity,

Gaussianity, unimodality) are made about densities, in the general treatment,



though particular choices will be made in due course in order to demonstrate

the approach.

2.1 Stochastic dynamics

A somewhat general assumption is made for the probabilistic framework that

the object dynamics form a temporal Markov chain so that:

p(x

t+1

jx

t

) = p(x

t+1

jx

t

) (3)

| the new state is conditioned directly only on the immediately preceding state,

independent of the earlier history. This still allows quite general dynamics, in-

cluding stochastic di�erence equations of arbitrary order; we use second order

models and details are given later. The dynamics are entirely determined there-

fore by the form of the conditional density p(x

t+1

jx

t

). For instance,

p(x

t+1

jx

t

) = exp�(x

t+1

� x

t

� 1)

2

=2;

represents a one-dimensional random walk (discrete di�usion) whose step length

is a standard normal variate, superimposed on a rightward drift at unit speed. Of

course, for realistic problems x is multi-dimensional and the density is more com-

plex (and, in the applications presented later, learned from training sequences).

2.2 Measurement

Observations z

t

are assumed to be independent, both mutually and with respect

to the dynamical process, and this is expressed probabilistically as follows:

p(z

t

; x

t+1

jx

t

) = p(x

t+1

jx

t

)

t

Y

i=1

p(z

i

jx

i

): (4)

Note that integrating over x

t+1

implies the mutual conditional independence of

observations:

p(z

t

jx

t

) =

t

Y

i=1

p(z

i

jx

i

): (5)

The observation process is therefore de�ned by specifying the conditional density

p(z

t

jx

t

) at each time t, and later, in computational examples, we take this to

be a time-independent function p(zjx). Details of the shape of this function, for

applications in image-stream analysis, are given in section 4.

2.3 Propagation

Given a continuous-valued Markov chain with independent observations, the rule

for propagation of conditional density p(x

t

jz

t

) over time is:

p(x

t+1

jz

t+1

) = k

t+1

p(z

t+1

jx

t+1

)p(x

t+1

jz

t

) (6)

where

p(x

t+1

jz

t

) =

Z

x

t

p(x

t+1

jx

t

)p(x

t

jz

t

) (7)



and k

t+1

is a normalisation constant that does not depend on x

t+1

.

The propagation rule (6) should be interpreted simply as the equivalent of

the Bayes rule (1) for inferring posterior state density from data, for the time-

varying case. The e�ective prior p(x

t+1

jz

t

) is actually a prediction taken from

the posterior p(x

t

jz

t

) from the previous time-step, onto which is superimposed

one time-step from the dynamical model (Fokker-Planck drift plus di�usion as

in �gure 1), and this is expressed in (7). Multiplication in (6) by the condi-

tional measurement density p(z

t+1

jx

t+1

) in the Bayesian manner then applies

the reactive e�ect expected from measurements (�gure 1).

3 The Condensation algorithm

In contrast to the static case in which the prior p(x) may be Gaussian, the

e�ective prior p(x

t+1

jz

t

) in the dynamic case is not Gaussian when clutter is

present. It has no particular known form and therefore cannot apparently be

represented exactly in the algorithm. The Condensation algorithm solves this

problem by doing altogether without any explicit representation of the density

function itself. Instead, it proceeds by generating sets of N samples from p(x

t

jz

t

)

at each time-step. Each sample s

t

is considered as an (s

t

; �

t

) pair, in which s

t

is a

value of x

t

and �

t

is a corresponding sampling probability. Suppose a particular

s

t

is drawn randomly from p(x

t

jz

t

) by choosing it, with probability �

t

, from the

set of N samples at time t. Next draw s

t+1

randomly from p(x

t+1

jx

t

= s

t

), one

time-step of the dynamical model, starting from x

t

= s

t

, a Gaussian density to

which standard sampling methods apply. A value s

t+1

chosen in this way is a

fair sample from p(x

t+1

jz

t

). It can then be retained as a pair (s

t+1

; �

t+1

) for the

N -set at time t + 1, where �

t+1

= p(z

t+1

jx

t+1

= s

t+1

). This sampling scheme

is the basis of the Condensation algorithm and details are given in �gure 2.

In practice, random variates can be generated e�ciently, using binary search,

if, rather than storing probabilities �

t

, we store cumulative probabilities c

t

as

shown in the �gure. At any time t, expected values E[f(x

t

)jz

t

] of properties of

the state density p(x

t

jz

t

) can be evaluated by applying the rule (2) from the

factored sampling algorithm.

4 Probabilistic parameters for curve tracking

In order to apply the Condensation algorithm, which is general, to the track-

ing of curves in image-streams, speci�c probability densities must be established

both for the dynamics of the object and for the measurement process. As men-

tioned earlier, the parameters x denote a linear transformation of a B-spline

curve, either an a�ne deformation, or some non-rigid motion. The dynamical

model and learning algorithm follow established methods [6, 7]. The model is a

stochastic di�erential equation which, in discrete time, is

x

t+1

= Ax

t

+B!

t

(8)

where A de�nes the deterministic component of the model and !

t

is a vector of

independent standard normal random variables scaled by B so that BB

T

is the



Iterate

At time-step t+ 1, construct the n

th

of N samples as follows:

1. Generate a random number r 2 [0; 1], uniformly distributed.

2. Find, by binary subdivision on m, the smallest m for which c

(m)

t

� r.

3. Draw a random variate s

(n)

t+1

from the density p(x

t+1

jx

t

= s

(m)

t

), assumed

Gaussian so direct sampling is possible.

Store samples n = 1; ::; N as (s

(n)

t+1

; �

(n)

t+1

; c

(n)

t+1

) where

c

(0)

t+1

= 0

�

(n)

t+1

= p(z

t+1

jx

t+1

= s

(n)

t+1

)

c

(n)

t+1

= c

(n�1)

t+1

+ �

(n)

t+1

and then normalise by dividing all cumulative probabilities c

(n)

t+1

by c

(N)

t+1

, i.e. so

that c

(N)

t+1

= 1.

If required, mean properties can be estimated at any time t as

E[f(x)jz

t

] �

N

X

n=1

�

(n)

t

f(s

(n)

t

):

For example, if the mean con�guration x̂ is required for graphical display, the

above rule is used with f(x) = x.

Fig. 2. The Condensation algorithm.

process noise covariance. The model can clearly be re-expressed as a temporal

Markov chain as follows:

p(x

t+1

jx

t

) = exp�

1

2

kB

�1

(x

t+1

�Ax

t

))k

2

: (9)

In practice, we use second order models, where x

t

, A and B are replaced by

�

x

t

x

t+1

�

;

�

0 I

A

0

A

1

�

and

�

0 0

0 B

�

respectively. Coe�cients are learned from sequences of images. An untrained

tracker is used to follow training motions against a relatively clutter-free back-

ground. The tracked sequence in the form (x

1

; x

2

; : : :) is then analysed [6, 7] by

Maximum Likelihood Estimation to generate estimates of A

0

, A

1

and B, thus

de�ning the model for use by the Condensation algorithm. A set of sample

values for time-step t = 0 must be supplied to initialise the algorithm. If the

prior density p(x

0

) is Gaussian, direct sampling may be used for initialisation,

otherwise it is possible simply to allow the density to settle to a steady state

p(x

1

) in the absence of object measurements.



4.1 Observations

The measurement process de�ned by p(z

t

jx

t

) is assumed here to be stationary

in time (though the Condensation algorithm does not require this) so a static

function p(zjx) is to be speci�ed. As yet we have no capability to estimate it

from data, though that would be ideal, so some reasonable assumptions must be

made.

Measurements z arising from a curve x are image-edge fragments obtained

by edge-detection along curve normals. We assume that noise and distortions

in imaging z are local, so in order to determine p(zjx) it is necessary only to

examine image pixels near the image curve which we denote (with mild abuse

of notation) x(s); 0 � s � 1. The corresponding measurement sequence is then

denoted z(s), where z(s) for each s is the detected edge on the normal at x(s)

that lies closest to the curve x. To allow for measurement failures and clutter,

the measurement density is modelled as a robust statistic, a truncated Gaussian:

p(zjx) = exp

�

�

1

2�

2

Z

1

0

�(s)ds

�

(10)

where

�(s) =

(

jx(s) � z(s)j

2

if jx(s)� z(s)j < �

� otherwise

(11)

and � is a penalty constant, related to the probability of failing to �nd a feature,

either on the curve or the background. Note that � is constant at distances

greater than � from the curve, so � acts as a maximum scale beyond which

it is unnecessary to search for features. In practice, of course, the integral is

approximated as a sum over discrete sample intervals of s.

5 Applying the Condensation algorithm to video-streams

5.1 Tracking a multi-modal distribution

In order to test the Condensation algorithm's ability to represent a multi-

modal distribution, we collected a 70 frame (2.8 second) sequence showing a

cluttered room with three people in it, facing the camera. The person initially

on the right of the image moves to the left, in front of the other two. A template

was drawn, using an interactive package, to �t around the head and shoulders of

a person, and we constructed an a�ne space of deformations of that template.

A motion model was learned by tracking a single person walking around the

room; background subtraction was necessary to ensure accurate tracking past

the clutter. Results of running the Condensation algorithm are shown in �gure

3. Since the feature of interest is primarily x translation, only the distribution of

the parameter corresponding to x coordinate has been plotted, however it is clear

that the people are of slightly di�erent sizes and heights, and this is modelled in

the full distribution. No background subtraction or other preprocessing is used;

the input is the raw video stream. Initialisation is performed simply by iterating

the stochastic model in the absence of measurements, and it can be seen that



this corresponds to a roughly Gaussian distribution on x coordinate at the �rst

time-step. The distribution rapidly collapses onto the three peaks present in the

image, and tracks them correctly, despite temporary di�culties while the people

occlude each other. The time-step used for tracking is frame rate (40 ms) since

the motion is fairly slow; in the �gure, distributions are plotted only every 80

ms for clarity. The stationary person on the left has the highest peak in the

distribution; this is to be expected since he is standing against a clutter-free

background, and so his outline is consistently detectable. The experiment was

run using a distribution of N = 1000 samples.

 Time

0 ms

400 ms

800 ms

1200 ms

1600 ms

2000 ms

2400 ms

2800 ms

Fig. 3. Tracking a multi-modal distribution. A histogram of the horizontal trans-

lation component of the distribution is plotted against time. The initial distribution is

roughly Gaussian, but the three peaks are rapidly detected and tracked as one person

walks in front of the other two.

5.2 Tracking rapid motions through clutter

Next we collected a 500 �eld (10 second) sequence showing a girl dancing vigor-

ously to a Scottish reel against a highly cluttered background, in order to test

the Condensation algorithm's agility when presented with rapid motions. We

drew a head-shaped template and constructed an a�ne space to represent its

allowable deformations. We also collected a training sequence of dancing against

a mostly uncluttered background, from which we trained a motion model for use

when the Condensation tracker was applied to test data including clutter.

Figure 4 shows some stills from the clutter sequence, with tracked head posi-

tions from preceding �elds overlaid to indicate motion. The contours are plotted



�eld 221 (4420 ms) �eld 265 (5300 ms)

Fig. 4. Maintaining tracker agility in clutter. A sequence of 500 �elds (10 seconds)

was captured showing a dancer executing rapid motions against a cluttered background.

The dancer's head was then tracked through the sequence. Representative �elds are

shown, with preceding tracked head positions to give an indication of the motion. The

tracked positions are shown at 40 ms intervals. The distribution consists of N = 100

samples.

at 40 ms intervals. The model parameters are estimated by the mean of the dis-

tribution at each time-step. The distribution consists of N = 100 samples. The

distribution was initialised by hand near the dancer's position in the �rst �eld,

as 100 samples do not sweep out enough of the prior to locate the initial peak

reliably. It would be equally feasible to begin with a larger number of samples in

the �rst �eld, and reduce the size of the distribution when the dancer had been

found (this technique was used in section 5.3).

Figure 5 shows the centroid of the head position estimate as tracked by both

the Condensation algorithm and a Kalman �lter. The Condensation tracker

correctly estimated the head position throughout the sequence, but after about

40 �elds (0.80 s), the Kalman �lter was distracted by clutter, never to recover.

Although it is expected that the posterior distribution will be largely uni-

modal throughout the sequence, since there is only one dancer, �gure 6 illustrates

the point that it is still important for robustness that the tracker is able to repre-

sent distributions with several peaks. After 920 ms there are two distinct peaks,

one caused by clutter, and one corresponding to the dancer's head. At this point

the clutter peak has higher posterior probability, and a unimodal tracker like

the Kalman �lter would discard the information in the second peak, rendering

it unable to recover; however the Condensation algorithm does recover, and

the dancer's true position is again localised after 960 ms.

5.3 Tracking complex jointed objects

The preceding sequences show motion taking place in a model space of at most 4

dimensions, so in order to investigate tracking performance in higher dimensions,

we collected a 500 �eld (10 second) sequence of a hand translating, rotating,



X

Y

Condensation tracker

X

Y

Kalman filter tracker

Time = 10 s Time = 10 s

Fig. 5. The Condensation tracker succeeds where a Kalman �lter fails. The

centroid of the state estimate for the sequence shown in �gure 4 is plotted against time

for the entire 500 �eld sequence, as tracked by �rst the Condensation tracker, then

a Kalman �lter tracker. The Condensation algorithm correctly estimates the head

position throughout the sequence. The Kalman �lter initially tracks correctly, but is

rapidly distracted by a clutter feature and never recovers.

�eld 46 (920 ms) �eld 47 (940 ms) �eld 48 (960 ms)

Fig. 6. Recovering from tracking failure. Detail from 3 �elds of the sequence il-

lustrated in �gure 4. Each sample from the distribution is plotted on the image, with

intensity scaled to indicate its posterior probability. Most of the samples, from a distri-

bution of N = 100, have too low a probability to be visible. In �eld 46 the distribution

has split into two distinct peaks, the larger attracted to background clutter. The distri-

bution converges on the dancer in �eld 48.



and exing its �ngers independently, over a highly cluttered desk scene. We con-

structed a twelve degree of freedom shape variation model and an accompanying

motion model with the help of a Kalman �lter tracking in real time against a

plain white background, using signed edges to help to disambiguate the �nger

boundaries.

Fig. 7. Tracking a exing hand across a cluttered desk. Representative stills from

a 500 �eld (10 second) sequence of a hand moving over a highly cluttered desk scene.

The �ngers and thumb ex independently, and the hand translates and rotates. The

distribution consists of N = 500 samples except for the �rst 4 �elds, when it decreases

from 1500 samples to aid initialisation. The distribution is initialised automatically by

iterating on the motion model in the absence of measurements.

Figure 7 shows detail of a series of images from the tracked 500 �eld sequence.

The distribution is initialised automatically by iterating the motion model in

the absence of measurements. The initialisation is performed using N = 1500

samples, but N is dropped gradually to 500 over the �rst 4 �elds, and the

rest of the sequence is tracked using N = 500. Occasionally one section of the

contour locks onto a shadow or a �nger becomes slightly misaligned, but the

system always recovers. Figure 8 shows just how severe the clutter problem is |

the hand is immersed in a dense �eld of edges. The Condensation algorithm

succeeds in tracking the hand despite the confusion of input data.

6 Conclusions

Tracking in clutter is hard because of the essential multi-modality of the con-

ditional measurement density p(zjx). In the case of curve tracking, multiple-

hypothesis tracking is inapplicable and a new approach is needed. The Con-

densation algorithm is a fusion of the statistical factored sampling algorithm

for static, non-Gaussian problems with a stochastic di�erential equation model

for object motion. The result is an algorithm for tracking rigid and non-rigid

motion which has been demonstrated to be far more e�ective in clutter than

comparable Kalman �lters. Performance of the Condensation algorithm im-

proves as the sample size parameter N increases, but computational complexity

is O(N logN). Impressive results have been demonstrated for models with 4 to

12 degrees of freedom, even when N = 100. Performance in several cases was



CondensationEdge detector

Fig. 8. Localising the hand in a dense edge map. Detail of a �eld from the hand

sequence. The result of running a directional Gaussian edge detector shows that there

are many clutter edges present to distract the system. The Condensation algorithm

succeeds in tracking the hand through this clutter.

improved still further with increased N = 1000. The system currently runs with

N = 50 in real-time (25Hz) on a desk-top graphics workstation (Indy R4400SC,

200 MHz).
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