
Scalable Near Identical Image and Shot Detection

Ondřej Chum1 James Philbin1 Michael Isard2 Andrew Zisserman1

1Department of Engineering Science, University of Oxford
2Microsoft Research, Silicon Valley

ABSTRACT
This paper proposes and compares two novel schemes for near du-
plicate image and video-shot detection. The first approach is based
on global hierarchical colour histograms, using Locality Sensitive
Hashing for fast retrieval. The second approach uses local feature
descriptors (SIFT) and for retrieval exploits techniques used in the
information retrieval community to compute approximate set inter-
sections between documents using a min-Hash algorithm.

The requirements for near-duplicate images vary according to
the application, and we address two types of near duplicate defini-
tion: (i) being perceptually identical (e.g. up to noise, discretization
effects, small photometric distortions etc); and (ii) being images of
the same 3D scene (so allowing for viewpoint changes and partial
occlusion). We define two shots to be near-duplicates if they share
a large percentage of near-duplicate frames.

We focus primarily on scalability to very large image and video
databases, where fast query processing is necessary. Both methods
are designed so that only a small amount of data need be stored for
each image. In the case of near-duplicate shot detection it is shown
that a weak approximation to histogram matching, consuming sub-
stantially less storage, is sufficient for good results. We demon-
strate our methods on the TRECVID 2006 data set which contains
approximately 165 hours of video (about 17.8M frames with 146K
key frames), and also on feature films and pop videos.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing methods; I.4
[Image Processing and Computer Vision]: Image Represen-
tation—hierarchical, statistical; E.2 [Data Storage Representa-
tions]: Hash-table representations
General Terms
Algorithms, Theory
Keywords
Near duplicate detection, LSH, Min Hash, Large image databases

1. INTRODUCTION
An image is called a near-duplicate of a reference image if it is

“close”, according to some defined measure, to the reference im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIVR’07, July 9–11, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-733-9/07/0007 ...$5.00.

Figure 1: First page of results for the query ‘flight of a bee’
using Google Images.

Figure 2: First page of results for the query ‘Munch Vampire’
using Google Images.

age. Near duplicate image detection (NDID) and retrieval is a vital
component for many real-world applications.

Consider the following example. Searching for the phrase ‘flight
of a bee’ in a popular internet image search engine (here, Google
Images), gives the first page of results shown in figure 1. Many
of these results show Salvador Dali’s painting ‘Dream Caused by
the Flight of a Bee Around a Pomegranate One Second Before
Awakening,’ and are perceptually identical. A user might prefer the
search engine to “collapse” these images of the painting into a set,
represented visually by a single reference image, so that a greater
diversity of images is initially displayed. If the user wants an image
of the painting, he could then click on the reference example to ex-
plore the near-duplicate set. If the painting isn’t desired, he doesn’t
have to view many near-duplicate occurrences of it. However, the
images are not identical. They differ in size, color adjustment, com-
pression level, etc. Therefore, exact duplicate detection (at the pixel
level) will not be able to group all similar results together.

A second example of an image search result is shown in figure 2.
There exist several different versions of the painting, ‘The Vam-
pire,’ by Edvard Munch, but this is not immediately apparent from
the search results. Grouping all the near-duplicates together so that
distinct versions appear as distinct groups is preferable.

Video processing is another area where NDID can prove ex-
tremely useful. Detection of identical frames or shots (sequences

of frames) can reduce the amount of data that need to be stored and
speed up further video analysis once the duplicates are removed.
This is especially true in video streams composed of news clips
and advertisements (repeated segments, logos, etc).

We can extend our notion of similarity to near-duplicate shot de-
tection (NDSD) in video. Given a reference shot, this can be used to
find all shots in a database that are near-duplicates of the reference,
where we define this to mean that a high proportion of images in
the reference shot have near-duplicates in the returned shot. A reli-
able NDSD system could be used, for example, to detect copyright
violations of digital video. YouTube [22], a video-sharing web-
site, currently contains a large amount of copyrighted television
and films. Once one example of a copyrighted video is identified,
a NDSD system can be used to automate or partially automate the
detection and removal of all the copies of that copyrighted clip.

2. NEAR DUPLICATE IMAGES AND SHOTS
The definition of a near duplicate image varies depending on

what photometric and geometric variations are deemed acceptable.
This depends on the application. In the case of exact duplicate de-
tection, no changes are allowed. At the other extreme, a more gen-
eral definition is to require that images be of the same scene, but
with possibly different viewpoints and illumination. In this paper,
we focus on images that appear, to a human observer, to be identical
or very similar. Therefore, the proposed methods can handle im-
ages with digitization artifacts, high levels of jitter, differing levels
of compression, mild photometric distortions and small amounts
of occlusion. In section 7 we explore how well the methods cope
when the definition of near-duplicate is expanded to include partial
scene-matching.

There are two main duplicate detection tasks that we would like
to perform. The first is to enumerate all the duplicates of a given
query image in a corpus. The second is simply to evaluate a predi-
cate: is there any duplicate of the query image in a set of images?
Both of these tasks arise in the image search example given in the
introduction.

The predicate evaluation is typically used as a subroutine in the
query process. When a corpus is very large and constantly being
updated (as with a web search engine) it is prohibitively expensive
to pre-calculate and store duplicate sets for every image.1 Instead,
at query time, the returned list is pruned to eliminate duplicates.
A query may match millions of images, but only a few top ranked
results are shown to the user. The pruning to find these k top-
ranked results works as follows: each image with rank 2 ≤ i ≤ k
is compared (using the near-duplicate predicate operation) to all
the higher-ranking images. If it is a near-duplicate of any higher-
ranked image, it is discarded, pulling the next best-ranked image
into the top-k set.

Detection of near duplicate images in large databases imposes
two challenging constraints on the methods used. Firstly, for each
image, only a small amount of data (a fingerprint) can be stored;
secondly, queries must be very cheap to evaluate. Ideally, enumer-
ating all the duplicates of an image should have complexity close to
linear in the number of duplicates returned2 and predicate evalua-
tion should take close to constant time. Since predicate evaluations

1Note that since the duplicate relation is not transitive, duplicate
detection cannot generally be used directly to cluster a corpus into
non-overlapping sets of near-duplicates.
2Web search engines typically scale by distributing queries in par-
allel among a set of computers, where the size of this set grows
linearly with the size of the corpus. Therefore the search complex-
ity is generally linear in the size of the corpus, although the constant
of proportionality is extremely small.

are performed at query time, and the number of evaluations is pro-
portional to the number of duplicates returned (which may be tens
of thousands for a common image in a large corpus), this constant
must also be very small, ideally no more than a few microseconds.

2.1 Efficient image representations
Most approaches to near-duplicate detection share a similar pat-

tern. Firstly, an image representation and a distance measure are
defined, which affects both the amount of data stored per image and
the time complexity of a database search. The amount of stored
data ranges from a (small) constant amount of data per image to
large sets of image features, whose size often far exceeds the size
of the images themselves. When searching the database for a near
duplicate image, algorithms of different time complexity are used,
the most naive approach being computing the difference to every
image in the database.

We propose and compare two methods for near duplicate im-
age detection, both storing only a small constant amount of data
per image. Both have near-constant time complexity for predicate
evaluation and a complexity for duplicate enumeration that is close
to linear in the number of duplicates returned. The image repre-
sentation and the distance measure are chosen in both cases so that
search for near duplicate images can be efficiently approximated by
a randomized procedure.

The first method (section 3) represents the image using a hierar-
chical tiled colour histogram and measures similarity using the Eu-
clidean distance between descriptors. Efficient retrieval is achieved
using Locality Sensitive Hashing (LSH). The second method (sec-
tion 4) represents the image by a sparse set of visual words. Here
the similarity is computed using a set overlap measure and efficient
retrieval is achieved using a min-Hash algorithm.

2.2 Near-duplicate shot detection
Here, we extend the concept of near-duplicate image detection

to video shots. Given a query shot, the task is to find near-duplicate
shots in the corpus that contain a large proportion of images that
are near-duplicates of images in the query. We achieve this using a
variant of the Hough transform.

We first initialize a voting table whose size is the number of shots
in the dataset. We take each frame from the query shot in turn and
search for its near-duplicates, sorting them chronologically (the or-
der they would have appeared in the original video). Each returned
image from the dataset acts like a voting permit and can be used
to vote for a particular shot only once for all the images in the
query shot. Once all the images in the query shot have been pro-
cessed, we use an empirically derived threshold on the percentage
of votes found in the voting table to return all near-duplicate shots.
We could enforce a more stringent shot-level test by examining the
temporal ordering between the query and target shots, but empiri-
cally we find that this is not needed for accurate detection.

The aggregation of many votes makes near-duplicate shot de-
tection quite robust to individual near-duplicate image false posi-
tives. As we show in section 6, this allows us to use weaker, but
cheaper, approximation schemes for near-duplicate image enumer-
ation when NDID is used as a subroutine for NDSD.

2.3 Related work
Ke et al. [10] demonstrate near-duplicate detection and sub-image

retrieval by using sparse features, taken from each image, coupled
with a disk-based LSH for fast approximate search on the indi-
vidual feature descriptors. They demonstrate the efficacy of their
method on a synthetic database of “corrupted” images but show the
system only scaling to handle 18K images with query times many
times slower than both our methods. Zhang & Chang [23] use a

parts-based representation of each scene by building Attributed Re-
lational Graphs (ARG) between interest points. They then compare
the similarity of two images by using Stochastic Attributed Rela-
tional Graph Matching, to give impressive matching results. Un-
fortunately, they only demonstrate their method on a few hundred
images and don’t discuss any way to scale their system to larger
datasets of images.

In the case of NDSD, others have considered a stronger tempo-
ral constraint than we employ here. For example, [1, 6, 24] use
edit distance. However, these methods are only applied to a corpus
consisting of tens of hours of video at most. The largest system
for near-duplicate shot detection to our knowledge is that of Joly et
al. [8, 9] for 30,000 hours of video. Their method involves repre-
senting each keyframe by a set of 20 dimensional spatio-temporal
descriptors computed about Harris interest points. They then use
a Hilbert curve for efficient approximate search for these features,
which has sub-linear search complexity, and a shot voting proce-
dure to flag duplicates. However, there are a number of limitations:
(i) a large amount of data must be stored per keyframe (possibly
hundreds of Harris points and their descriptors); (ii) it is not suitable
for real time operations. Our approach differs in being applicable
to both images and video, having time complexity for enumerating
duplicates that is close to linear in the number of duplicates, and
only requiring a small, constant amount of data to be stored per
image, independent of the number of detected features.

3. COLOUR HISTOGRAMS AND LSH
3.1 An image in 384 bytes

In order to be able to deal efficiently with millions of images,
while still being able to keep a sizeable portion of the data in main
memory, we need to generate an extremely compressed feature vec-
tor for each image. Here we propose using a colour histogram com-
bined with a spatial pyramid over the image to jointly encode global
and local information. We use a colour model which is partially
colour normalized and simple to compute, known as the opponent
colour model [4]:

I = (R + G + B)/3

O1 = (R + G− 2B)/4 + 0.5

O2 = (R− 2G + B)/4 + 0.5

The spatial pyramid is arranged so that we use 128 bytes of data in
describing each level. These are appended to create the final feature
vector. On descending to the next level in the pyramid, the number
of segments we take histograms over increases four-fold. There-
fore, to maintain the size constraints for each level, the number of
bytes used to describe each channel per segment is quartered. This
places a desirable bias on the importance of the levels. We require
the histograms of two candidate regions at the top level to agree
quite accurately for them to be matched, but we have more “give”
at the lower levels, due to the lower histogram resolution. As indi-
vidual frames often suffer from jitter and noise, this is a necessary
requirement for ensuring we match near duplicate frames. The rep-
resentation is illustrated in figure 3.

We use double the amount of data for storing the intensity chan-
nel, I , as the other opponent colour channels, O1 and O2. This is a
common practice as generally more information is contained in the
intensity information. We also use three pyramid levels and sum
the colour components for each pixel, into a running histogram for
each segment. We then L1 normalize each histogram and represent
each bin by a single byte.

As well as giving us a very reduced representation for each im-
age, computing the histogram is very efficient. We only accumulate

Level I O1 O2

0 64 32 32
1 16 8 8
2 4 2 2

Figure 3: The left side of this figure shows the spatial subdivi-
sion of the image at each level of the histogram pyramid. The
table to the right shows the amount of data stored for each seg-
ment and colour channel in bytes.

Figure 4: Segmenting the space using non-orthogonal random
projections. Each cell is represented by a tuple.

pixels explicitly into the histograms at the lowest level and higher
levels are found by summing these histograms from lower levels.
Additionally, the opponent transform can be computed using vec-
torized integer operations, which enable the histograms for video
material to be computed at approximately 150 fps for frame sizes
of 320× 240 pixels on a 2GHz machine.

To find near duplicate frames, it is assumed that Euclidean dis-
tance between their feature vectors is a meaningful measure of sim-
ilarity. The problem then simplifies to: given a query frame, find
all the frames within some specified distance from the query. Brute
force search is completely impractical given the high dimension-
ality and size of the data, so we use the LSH scheme described
in the following section to efficiently find all the points within the
distance.

3.2 Locality Sensitive Hashing overview
Locality Sensitive Hashing (LSH) [3] is a method developed for

efficiently answering approximate near neighbour queries, of the
form “find all points within a given radius, R, from a query point
with high probability”. The method works by generating a number
of hash tables of points, where the hashing function works on tuples
of random projections of the form:

ha,b(v) =
ja · v + b

w

k
where a is a random vector whose components are independently
drawn from a Gaussian distribution, b is a random number drawn
from [0, w), w specifies a bin width (which is set to be a constant
for all projections), and v is the query point. A Gaussian distribu-
tion is used so that the difference between the projections of two
points is approximately L2 distance preserving, as the Gaussian is
a 2-stable distribution [7]. Each projection splits the space along
planes perpendicular to a, separated by distance w and a tuple of
projections specifies a segmentation of the space akin to a grid, but
where the axes are non-orthogonal (see figure 4). Clearly, if the
number of projections is chosen carefully, then two points which
hash into the same bin will be nearby in the space. To avoid bound-
ary effects, many hash tables are generated, each using a different

tuple of projections (although, we can improve run-time speed by
re-using some of these projections).

The time complexity for querying every hash table is constant
and this returns a set of candidate points which lie near to the query
point in space. In practice, a proportion of these points will be at a
greater distance than R from the query point. The experiments in
section 5 show that for some applications these “false matches” can
be tolerated, in which case the histograms themselves do not need
to be consulted at query time, and so they need not be stored. This
leads to a storage cost of 5.3 bytes per hash table per image.

If pruning is required, we need to explicitly compute the dis-
tance to each of the returned points. The total number of points
and therefore the number of distances to compute grows as O(nρ),
where ρ = ln 1/p1

ln 1/p2
, p1 is a lower bound on the probability that two

points within R will hash to the same bucket and p2 is an upper
bound on the probability that two points not within R will hash to
the same bucket. Clearly if p1 � p2, then ρ will be very small.
Thus the complexity of enumerating duplicates is close to linear in
the number of duplicates. When this pruning is needed, we must
store an additional 384 bytes per image at query time.

4. SPARSE FEATURES AND MIN-HASH

4.1 Image description
Local features and descriptors have been developed for image to

image matching [11, 14]. These are designed to be invariant to il-
lumination and geometric transformations varying from scale to a
full affine transformation, as might arise from a viewpoint change.
They have been used successfully in model based recognition sys-
tems [11]. Furthermore, by quantizing the descriptors into visual
words, ‘bag-of-words’ representations have also been used success-
fully for matching images and scenes [15, 19]. We build on these
approaches in our design of a sparse feature based near duplicate
image detector.

The difference of Gaussians (DoG) [11] operator is used as a
feature (region) detector. Each region is then represented by a
SIFT [11] descriptor using the image intensity only. SIFT features
have proven to be insensitive to small local geometric and photo-
metric image distortions [13].

A ‘visual vocabulary’ [19] – a set of visual words V – is con-
structed by vector quantizing the SIFT descriptors of features from
the training data using K-means. A random subset of the database
can be used as the training data. The K-means cluster centres define
visual words. The SIFT features in every image are then assigned
to the nearest cluster centre to give the visual word representation.

Assume a vocabulary V of size |V| where each visual word is
encoded with unique identifier from {1, . . . , |V|}. Each image is
represented as a set Ai of words Ai ⊂ V . Note, that a set of words
is weaker representation than a bag of words, as it doesn’t record
the frequency of occurrence of visual words in the image.

The distance measure between two images is computed as the
similarity of sets A1 and A2, which is defined as the ratio of the
number of elements in the intersection of the representations over
their union:

sim(A1,A2) =
|A1 ∩ A2|
|A1 ∪ A2|

. (1)

To efficiently retrieve NDID under this distance measure a min-
Hash algorithm is used. This allows us to approximately find all
images whose similarity is above a threshold for a given query in
constant time. We describe the search algorithm in the following
sub-section.

4.2 Min Hash review
In this section, we describe how we adapt a method originally de-

veloped for text near-duplicate detection [2] to near-duplicate de-
tection of images. We describe it using textual words, and then
explain the adaptation to visual words in the following sub-section.

Two documents are near duplicate if the similarity sim(A1,A2)
is higher than a given threshold ρ. The goal is to retrieve all docu-
ments in the database that are similar to a query document. This
section reviews an efficient randomized procedure that retrieves
near duplicate documents in time proportional to the number of
near duplicate documents (i.e. time complexity is independent of
the size of the database). The outline of the algorithm is as fol-
lows: First a list of min-hashes are extracted from each document.
A min-hash is a single number having the property that two setsA1

and A2 have the same value of min-hash with probability equal to
their similarity sim(A1,A2). For efficient retrieval the min-hashes
are grouped into n-tuples called sketches. Identical sketches are
then efficiently found using a hash table. Documents with at least
m identical sketches (sketch hits) are considered as possible near
duplicate candidates and their similarity is then estimated using all
available min-hashes.
min-Hash. First, a random permutation of word labels π is gen-
erated. For each document Ai a min-hash min π(Ai) is recorded.
Consider the following example: vocabulary V = {A,B,C,D,E,F}
and three sets {A,B,C}, {B,C,D}, and {A E F}. Four independent
random permutations and corresponding min-hashes follow in the
table.

pe
rm

ut
at

io
ns

A B C D E F A B C B C D A E F
3 6 2 5 4 1 2 2 1
1 2 6 3 5 4 1 2 1
3 2 1 6 4 5 1 1 3
4 3 5 6 1 2 3 3 1

m
in-hashes

The method is based on the fact, which we show later on, that
the probability that min π(A1) = min π(A2) is

P (min π(A1)=min π(A2)) =
|A1 ∩ A2|
|A1 ∪ A2|

= sim(A1,A2).

To estimate sim(A1,A2), N independent random permutations πj

are used. Let l be the number of how many times min πj(A1) =
min πj(A2)). We estimate sim(A1,A2) = l/N . In our example,
the sets {A,B,C} and {B,C,D} have three identical min-hashes and
the estimated similarity will be 0.75, while the exact similarity is
0.5. The sets {A,B,C} and {A,E,F} share one min-hash and their
similarity estimate is 0.25 (0.2 is exact).
How does it work? Consider drawing X = arg min π(A1 ∪A2).
Since π is a random permutation, each element of A1 ∪ A2 has
the same probability of being the least element. Therefore, we can
think of X as being drawn at random from A1 ∪ A2. If X is an
element of bothA1 andA2, i.e. X ∈ A1∩A2, then min π(A1) =
min π(A2) = π(X). If not, say X ∈ A1 \ A2, then π(X) <
min π(A2). Therefore, for random permutation π it follows

P (min π(A1) = min π(A2)) =
|A1 ∩ A2|
|A1 ∪ A2|

. (2)

Sketches. For efficiency of the retrieval, the min-hashes are grouped
into n-tuples. Let Π be an n-tuple (π1, . . . , πn) of different in-
dependent random permutations of V . Let SΠ(A1) be a sketch
(min π1(A1), . . ., min πn(A1)). The probability that two sets A1

andA2 have identical sketches SΠ(A1) = SΠ(A2) is sim(A1,A2)
n

since the permutations Π (and hence the min-hashes in the sketch)
are independent. Grouping min-hashes significantly reduces the
probability of false positive retrieval. The retrieving procedure then

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

similarity

P
(m

 s
ke

tc
h

 h
it

s)

m:

 1

 2

 3

 4

 5

Figure 5: The probability of at least m sketch hits for k = 64,
n = 3.

Figure 6: A random sample of TRECVID key frames.

estimates sim(A1,A2) only for image pairs that have at least m
identical sketches out of k sketches (Π1, . . . , Πk). The probability
P (A1

m∼ A2) that the sets A1 and A2 have at least m identical
sketches out of k is given

P (A1
m∼ A2) =

kX
i=m

k

i

!
pin(1− pn)k−i, (3)

where p = sim(A1,A2). If we considered sketches of size n = 2
in the example, the sets {A,B,C}, {B,C,D}, and {A,E,F} would be
represented by sketches ((2, 1), (1, 3)), ((2, 2), (1, 3)), and ((1, 1),
(3, 1)) respectively. The only sketch hit is between the sets {A,B,C}
and {B,C,D} (in the second sketch). No other pair would be con-
sidered as a possible near duplicate.

A plot, showing the dependency of P (A1
m∼ A2) on p for k =

64, n = 3 and varying m is shown in figure 5. Note, that the
parameters k and n have to be fixed at the database design time,
whereas m can be specified at query time.

4.3 Text versus images
In the case of text near duplicate search, the size |V| is typically

very large (especially for shingling [2], that works with sequences
of words rather than single words). Two text documents are typi-
cally considered identical if their similarity is above 90% [5].

In our case, the visual vocabulary is significantly smaller, typi-
cally of the order of tens of thousands of visual words. Addition-
ally, many visual words are unstable and can disappear between
apparently identical images. Therefore, in near duplicate image re-
trieval, we are interested in image pairs with a similarity greater
than 35% (or even less). For NDID it is sufficient to only store the
min-hashes. Using k = 64 sketches of length n = 3 requires 384
bytes per image, which, including the necessary hash tables, leads
to around 724 bytes per image in our experiments.

5. EXPERIMENTS
We do not have access to ground-truth data for our experiments,

since we are not aware of any large public corpus in which near-
duplicate images have been annotated. We do show representative
results to illustrate the typical performance of the methods; how-
ever most of our experiments focus on evaluating the effect of the
approximations we have used to speed up retrieval.

For each method, we consider three sets of near-duplicates of a
given image. The first is the “true similarity” set: this is the set
of images that matches our similarity definition. For the colour his-
togram method (henceforth referred to as CH-LSH) this is the set of
images whose histograms are within a given distance of the refer-
ence histogram. For the image feature method (henceforth referred
to as SF-mH) it is the set of images whose similarity as defined in
(1) is above a threshold. This true similarity set is constructed by
exhaustive search of the corpus and is used purely for evaluation of
our approximate methods since it would be impractically expensive
for real applications.

The second set of near-duplicates is the “raw approximate simi-
larity” set. In the case of CH-LSH, this is the set of images that are
retrieved by an LSH query using the reference image’s histogram.
In the case of SF-mH it is the set of images that have at least one
matching sketch. This set includes many false positives for both
methods, however it is the cheapest to compute. If only the raw
approximate similarity set is required it is not necessary to store
the actual colour histograms (for CH-LSH) or min-hashes (for SF-
mH).

The third set is the “verified approximate similarity” set. This
is a filtered version of the raw approximate similarity set. In the
case of CH-LSH, the distance between the reference histogram and
each histogram in the raw set is computed, and any histograms that
differ by more than the selected threshold are discarded. Thus the
verified approximate similarity set for histograms contains no false
positives compared with the true similarity set, though there may
be missed near-duplicates. In the case of SF-mH the similarity
estimate is computed using all min-hashes and any images with
estimated similarity smaller than a threshold are discarded. Since
min-hashes only provide an estimate of the similarity, both false
positives and false negatives w.r.t. the true similarity set can occur.

We demonstrate our methods for NDID on the TRECVID 2006
data set. TRECVID [20] is an annual benchmark, designed to
promote progress in the field of video information retrieval. The
dataset used for testing is about 165 hours (17.8M frames, 127 GB)
of MPEG-1 news footage, recorded from different TV stations from
around the world. From this data, a shot boundary detector is run
by the organizers and several “representative” keyframes are taken
from each shot and provided separately as JPEG’s, giving 146,588
keyframes. Each frame is normally of quite low quality and at a
resolution of 352×240 pixels. The frames suffer from compres-
sion artifacts, jitter and noise typically found in highly compressed
video. A random sample of the data (figure 6) shows that it contains
a huge variety of different objects, scenes and people. We compare
our two methods for NDID on TRECVID using just the keyframes,
without using temporal information. In this setting, near dupli-
cates for every key-frame are searched for. We also show results
for NDSD over the full 17.8M frames of TRECVID, using the CH-
LSH method.

5.1 LSH (CH-LSH) retrieval
For this experiment, we defined near duplicate images as images

having an L2 distance between their histograms of less than 200.
For the LSH, 55 random projections were computed and combined
in tuples to create 36 hash tables (taking 539 bytes per image in-
cluding the histogram). Using these parameters, the average false
negative rate (the fraction of images in the true similarity set that
are not in the raw approximate similarity set) was 0.98%. The ratio
of sizes between the raw approximate similarity set and the verified
approximate similarity set was 9.09, on average.

To show that a small change of the threshold does not result in
retrieving almost the whole corpus we drew a large number of ran-

0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3
x 10

6

0 40 80 120 160 200
0

0.5

1

1.5

2
x 10

4

0 40 80 120 160 200
0

0.5

1

1.5

2
x 10

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
x 10

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

Figure 7: Histograms of image pair distances in the CH-LSH
(top), and true similarity in the SF-mH method (bottom) from
TRECVID data. Left to right: raw approximate similarity set,
verified approximate set, and false negatives.

69 146 155 223 280

95 146 198 219 250

96 141 169 239 255

Figure 8: Examples of images form the TRECVID database.
The query image is in the first column, other columns show
images and their distance for the color histogram method.

dom pairs of images and measured their similarity. The similarity
between a random pair of images is larger than 500 in 99.9% of
cases. Figure 7(top) shows histograms of distances, and demon-
strates that for NDID, verifying the raw results returned from the
LSH is necessary to ensure accurate retrieval. Figure 8 shows some
example images from the TRECVID dataset along with a selection
of retrieved images showing the typical perceptual similarity be-
tween images with varying histogram distances.

On a 2GHz commodity laptop, building the hash tables and find-
ing all near-duplicates for the 150K TRECVID keyframes took
only 15s + 15s = 30s.

5.2 Min Hash (SF-mH) retrieval
For this experiment, we detected DoG features [11] and vector-

quantized its SIFT description into vocabulary of 216 words. We
defined near duplicate images as images having similarity (1) above
35%. For retrieval we used k = 64 sketches of n = 3 min-hashes
(taking 724 bytes per image – 384 for min-hashes and 5.3 bytes for
each of 64 hash tables). Images were placed in the raw approxi-
mate similarity set given a single sketch hit. The verified approx-
imate similarity set removed all images with estimated similarity
lower than 35%. Using these parameters, 0.75% of images in the
true similarity set were missing from the raw approximate simi-
larity set. On average 5.9% of images in the verified approximate
similarity set were not in the true similarity set, and 4.95% of the
true similarity set was missing from the verified approximate set.
The average ratio of sizes between the raw approximate similarity
set and the verified approximate similarity set was 10.04.

The similarity between random image pairs is less than 5% in
99.9% of cases. Figure 7 (bottom row) shows histograms of simi-
larities, and demonstrates that for the SF-mH method verifying the
raw results returned by sketches is necessary for accurate retrieval.

Figure 9 shows some example images from the TRECVID dataset
along with a selection of retrieved images showing the typical per-
ceptual similarity between images with varying feature similarities.

0.79 0.69 0.52 0.27 0.21

1.00 0.56 0.40 0.29 0.21

0.72 0.70 0.37 0.28 0.24

Figure 9: Examples of images form the TRECVID database.
The query image is in the first column, other columns show
images and their similarity for the Min Hash method.

31/3/0 31/1/0 31/0/0 33/0/2 34/0/0

37/0/0 34/0/6 37/0/0 34/0/2 39/0/0

37/0/3 31/0/2 30/0/0 30/2/0 36/1/1

Figure 10: Images with 30-40 detected near duplicates: sam-
ples from images retrieved by both methods (common ND /
colour histogram only / min Hash only).

5.3 Near duplicate definition comparison
We have selected several sets of 30-40 near duplicate images and

have compared results of the two proposed methods on them. This
experiment compares the ability of the two representations (colour
histograms and image features) to encode the information neces-
sary to detect near-duplicate images. Image samples from the sets
are shown in figure 10. Three numbers are overlaid on the images:
the number of images retrieved by both methods, the number of
images retrieved using CH-LSH only, and the number of images
retrieved by SF-mH only. Manual verification shows that all re-
turned images are perceptually duplicates in this limited trial, in
other words we did not see any false positives. We have no ground
truth to determine the exact number of false negatives, but as the
figure shows, each method had a small number of false negatives
compared with the other. No obvious trends emerged from these
false negatives, however we know that each method is sensitive to
certain failure modes:
Occlusion. Since L2 is not a robust distance, local occlusions can
cause a significant increase of the colour histogram distance, mak-
ing CH-LSH sensitive to occlusion. For the min-hashes, occlusions
typically insert and remove some visual words into the image rep-
resentation. Therefore, SF-mH tolerates occlusions that preserve a
sufficiently high percentage of visual words.
Noise and blur. The SF-mH method is heavily dependent on the
quality of the feature detection. Therefore, any image deforma-
tion that affects the firing of the feature detector can alter the per-
formance of the whole method. Such deformations include strong
artifacts / noise (which increases the number of features) and im-
age blur (which decreases the number of features). The CH-LSH
method is fairly insensitive to these types of image deformations.

6. NEAR-DUPLICATE SHOT DETECTION
In addition to the keyframe experiment, we also performed shot-

based near-duplicate detection for the TRECVID data on the full
17.8M frames, using CH-LSH. For this experiment, we used 36
random projections, combined into 8-tuples for 36 hash tables, and
used the raw approximate similarity sets directly, which required
only 190 bytes per image of storage. On a 2GHz machine, the

K
ey

fr
am

e
Query Candidate Result

Sh
ot

Fr
am

es

(a)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Shot overlap threshold

A
ve

ra
ge

 s
ho

t f
al

se
 p

os
iti

ve
 r

at
e

(b)
Figure 11: (a) shows a near-duplicate shot matched from the
frames, which wouldn’t have been found by examining the
keyframes alone. (b) compares how the false positive duplicate
rate changes with varying overlap threshold on a small subset
of 10 hours of TRECVID data.

method took approximately 90mins to search for all 17.8M frames
in the dataset.

Figure 11(a) demonstrates the need to perform near-duplicate
shot detection as opposed to using the keyframes alone. This fig-
ure shows that, in general, matching shots on individual frames
and matching shots on keyframes will give different results. In
figure 11(b), we examine the ability of the shot-voting to act as
a proxy for histogram verification on a small sample of 10 hours
of TRECVID data. This shows that when the overlap threshold
is high, histogram verification is not required to achieve low false
positive rates for near-duplicate shot detection. For performing
NDSD over the whole dataset, we use a shot overlap threshold of
0.7, which gives us an average false positive rate of 9.4× 10−4.

7. SCENE REPETITION IN FILMS
In this section we consider a looser definition of NDID – that

of identifying images of the same scene. In this case the images
may differ perceptually. We take as our application detecting those
frames in a video that were shot at the same location. Previous
methods for this application have used the feature film ‘Run Lola
Run’ [Tykwer, 1999] [18] and the music video ‘Come Into My
World’ [Gondry, 2002] [16], since both videos contain a time loop.
We use both these videos for the experimental evaluation.
Kylie Minogue: Come Into My World. The video contains four
repeats of Kylie walking around a city area (with superposition),
and a short 5th appearance at the end. A full description is given
in [21]. For the experiments the video is represented as key frames
by extracting every 15th frame, giving 423 frames. We compare the
performance of the CH-LSH and SF-mH methods to the ground
truth by computing frame similarity matrices.

For the SF-mH method a new vocabulary of 10,000 visual words
is generated from the key frames. Each frame is then represented by
384 min-hashes, and sketches of 2 min-hashes are generated from
these. It is necessary to use a smaller n (the number of min-hashes
in a sketch) in this case to avoid false negatives. The CH-LSH
method is unchanged from the TRECVID implementation.

Figure 12 top row shows similarity matrices for CH-LSH (dis-
tance threshold 450) and SF-mH (similarity threshold 15%) respec-
tively. In all similarity matrices, self-matching frames (diagonal)
are not displayed. Matches along the diagonal are matches between
consecutive frames. Both methods are successful in capturing the
contiguous scene repetitions as demonstrated by the parallel diag-
onal lines. Note that the similarity matrix for SF-mH is slightly
denser, especially in the fourth repetition where the frames are
more occluded. Also, the lines of repetition are thicker, since sev-
eral consecutive frames are matched despite viewpoint change. The
viewpoint change is captured in the samples from repeated frames

dist≤ 450

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

sim≥ 15%

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

#1 #101 #204 #308 #409

#7 #108 #210 #313 #415

#27 #128 #232 #339

Figure 12: Top row: the similarity matrices for key frames
from ‘Come Into My World’ for CH-LSH (left) and SF-mH
(right). Bottom: samples of detected similar frames by SF-mH.
Four repetitions (plus a few frames of a fifth) are evident (diag-
onal and off diagonal lines). The frame number is overlaid on
the frames.

C
H

-L
SH

dist≤ 200

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

dist≤ 300

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

dist≤ 400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

dist≤ 650

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

SF
-m

H

sim≥ 30%

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

sim≥ 25%

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

sim≥ 20%

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

sim≥ 10%

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Figure 13: Dependance of the scene repetition retrieval in
‘Come Into My World’ on varying thresholds.

in figure 12 bottom. This demonstrates the tolerance to viewpoint
change built in by design to the SF-mH method.

The dependance of the performance on the distance / similarity
threshold for the two methods is shown in figure 13. For CH-LSH,
the distance thresholds used were 200, 300, 400, and 650; for SF-
mH, the similarity thresholds were 30%, 25%, 20%, and 10%. Note
that there is a “sweet spot” threshold that reveals the story repetition
for both the methods. This fact suggests that our distance/similarity
measure corresponds to some extent to a human’s perception of
image similarity.
Run Lola Run. The story in the film repeats three times, with
many of the repeated shots being of identical locations although
the camera viewpoint can differ. The video is represented as key
frames by extracting every 25th frame, giving 4285 frames.

For the SF-mH method in order to give extra tolerance to view-
point change the feature detector is changed here from DoG to Hes-
sian Affine [12, 17]. Again SIFT descriptors are taken and vector
quantized into 10,000 visual words. The matching time over all
pairs of near duplicate images (not including the feature detection)
is less than 1 second for our Matlab implementation on a 2GHz
machine. The CH-LSH implementation is unchanged from the
TRECVID case.

dist≤ 400

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

4000

sim≥ 15%

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

4000

#675 #939 #1013 #1422

#1964 #2144 #2171 #2778

#3096 #3277 #3324 #4032

Figure 14: Top row: the similarity matrices for CH-LSH and
SF-mH for key frames in ‘Run Lola Run’. The raw data has
been processed by morphological dilation for display purposes.
Three repetitions are evident (diagonal and off diagonal curves)
in the right plot. Bottom: examples of near duplicate frames
found by SF-mH.

Figure 14 shows the key-frame similarity matrix for both meth-
ods. In the case of SF-mH this matches the results of [18] (Fig. 20),
reflecting the ground truth of the movie. The comparison between
the CH-LSH and SF-mH methods is instructive here – in the CH-
LSH case there are so many false positives that it is not possible to
see the true structure. Setting the threshold to 400 gave reasonable
results for scene-matching in the Kylie video because in that video,
different views of the scene had very different histogram distribu-
tions, but this is not indicative of most television or film data. For
Lola, the histograms are more similar throughout the film, so set-
ting the threshold so high gives many false positives. A threshold
of 200 does not reveal any of the structure in the film. We have
also tried using our NDSD CH-LSH method for Lola, but again,
because our histograms are not designed to be viewpoint invariant,
we are unable to correctly match scenes in the film.

8. DISCUSSION
Our preliminary experiments on NDID in a large video corpus

suggest that the performance of CH-LSH and SF-mH is interchange-
able. If this result is repeatable on a corpus of photographs we will
conclude that CH-LSH is preferable as a duplicate-detection mech-
anism for image search engines. The processing time per frame for
CH-LSH is much smaller than for SF-mH, the method is dependent
on many fewer parameters and it does not require the construction
of a feature vocabulary.

Our algorithm for NDSD provides a very time-efficient approx-
imation to CH-LSH and is a promising step towards automatically
locating duplicate video clips in large corpora, a feature that is cur-
rently missing from large-scale commercial video search engines.

As the definition of near-duplicate images is changed to include
more perceptually dissimilar examples, the performance of SF-mH
starts to dominate that of CH-LSH. We believe this may be valuable
for certain image search tasks. For example, the results of a query
for images of Paris might benefit from duplicate detection that col-
lapsed all images of the Eiffel tower into a single set, regardless of
weather, time of day, lighting conditions, and with some invariance
to viewpoint. Our experiments in section 7 suggest that SF-mH
may be a promising approach for this application.

We conclude by noting that although we have proposed two dif-
ferent image representations with associated distance measures and
search methods, in principle the search method of one could be ap-
plied to the other. For example, the bag of visual words sparse
feature representation can be cast as a normalized histogram, and
near duplicates within an L2 distance may then be found using the
LSH search method.
Acknowledgement. We are grateful for support from the Royal
Academy of Engineering, the EU Visiontrain Marie-Curie network,
and the EPSRC.

9. REFERENCES
[1] M. Bertini, A. D. Bimbo, and W. Nunziati. Video clip

matching using mpeg-7 descriptors and edit distance. In
CIVR, pages 133–142, 2006.

[2] A. Broder. On the resemblance and containment of
documents. In SEQS: Sequences ’91, 1998.

[3] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG, pages 253–262, 2004.

[4] J. Geusebroek, R. van den Boomgaard, A. Smeulders, and
H. Geerts. Color invariance. PAMI, 23(12):1338–1350, 2001.

[5] M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR ’06, pages
284–291, New York, NY, USA, 2006. ACM Press.

[6] T. C. Hoad and J. Zobel. Fast video matching with signature
alignment. In MIR, pages 262–269, 2003.

[7] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. In IEEE
Symposium on Foundations of CS, 2000.

[8] A. Joly, O. Buisson, and C. Frélicot. Content-based copy
detection using distortion-based probabilistic similarity
search. IEEE Transactions on Multimedia, to appear, 2007.

[9] A. Joly, C. Frelicot, and O. Buisson. Robust content-based
video copy identification in a large reference database. In
Proc. CIVR, 2003.

[10] Y. Ke, R. Sukthankar, and L. Huston. Efficient near-duplicate
detection and sub-image retrieval. In ACM Multimedia, 2004.

[11] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[12] K. Mikolajczyk and C. Schmid. An affine invariant interest
point detector. In Proc. ECCV. Springer-Verlag, 2002.

[13] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. In Proc. CVPR, 2003.

[14] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A
comparison of affine region detectors. IJCV, 65(1/2):43–72,
2005.

[15] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In Proc. CVPR, 2006.

[16] T. Quack, V. Ferrari, and L. Van Gool. Video mining with
frequent itemset configurations. In Proc. CIVR, 2006.

[17] F. Schaffalitzky and A. Zisserman. Multi-view matching for
unordered image sets, or “How do I organize my holiday
snaps?”. In Proc. ECCV, 2002.

[18] F. Schaffalitzky and A. Zisserman. Automated location
matching in movies. CVIU, 92:236–264, 2003.

[19] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proc. ICCV, 2003.

[20] TRECVID. http://trecvid.nist.gov/.
[21] Wikipedia. Come into my world.

http://en.wikipedia.org/wiki/Come_Into_My_World.
[22] YouTube. http://www.youtube.com/.
[23] D. Zhang and S. Chang. Detecting image near-duplicate by

stochastic attributed relational graph matching with learning.
In ACM Multimedia, 2004.

[24] J. Zhou and X.-P. Zhang. Automatic identification of digital
video based on shot-level sequence matching. In ACM MM,
pages 515–518, 2005.

