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ABSTRACT

Recent developments in video-tracking allow the out-

lines of moving, natural objects in a video-camera in-

put stream to be tracked live, at full video-rate. The

system used here is based on Kalman Filtering with

a B-spline representation of curves to track the sil-

houettes of moving non-polyhedral objects. For exam-

ple hands, lips, legs, vehicles, fruit can be tracked at

video-rate without any special hardware beyond a desk-

top workstation and a video-camera and framestore.

The novel contribution of this paper is a tracking

algorithm that uses a bootstrapping technique to learn

a stochastic, dynamic model for given motions from

example video-streams. Incorporating such a model

into the tracking algorithm greatly enhances maximum

tracking speed and robustness to distraction from back-

ground objects. Experiments with learning both rigid

and non-rigid motions, using moving hands and lips,

clearly show the increased tracking power resulting

from the learned dynamics.

1 Introduction

Real-time video tracking has been previously achieved

for line-drawings [11] and polyhedral structures [14]

and for simple, natural features such as road-edges [8].

Commercial systems (Watsmart, Oxford Metrics) are

available which track arti�cial markers on live video.

Natural point features (e.g. on a face) but not curves,

have been tracked at 10Hz using a workstation assisted

by image-processing hardware [3]. Curve trackers [13]

have been demonstrated on modest workstations but

slower than frame-rate. The approach presented in

this paper allows agile tracking of curves in live video

data, at 50Hz, on a modest workstation (SUN IPX

plus Cohu video-camera and Datacell S2200 frame-

store) without additional hardware. The possibility

of tracking curves within a Kalman �ltering frame-

work was raised by Szeliski and Terzopoulos [16]. A

Kalman Filter framework [10] with a B-spline state-

space is used here, with preprogrammed dynamics, as

described in [6], to form a \default" tracker.

The new development reported in this paper is the

use of a training algorithm to replace the default dy-

namics embedded in the tracking �lter by learned dy-

namics. The learned dynamical models are based on

stochastic di�erential equations [1]. and the learning

algorithm is a simple application of stochastic system

identi�cation [2] using maximum likelihood estima-

tion.

Training proceeds as follows. Example motions are

tracked by a general-purpose tracker based on the as-

sumption of programmed, default object dynamics.

The tracked motion is then used as a training set for

the new algorithm which estimates the underlying dy-

namics of the training motion. The learned dynam-

ics are then incorporated into a new version of the

tracker which then enjoys enhanced tracking capabil-

ity for motions similar to those in the training set. The

learning process can be repeated to bootstrap track-

ers of successively increasing performance. The e�ec-

tiveness of the learning algorithm in generating agile

trackers which are resistant to distraction from back-

ground clutter has been demonstrated.

2 Tracking framework

The tracker consists of an estimator for a piecewise

smooth image-plane curve in motion

r(s; t) = (x(s; t); y(s; t)):

Following the tracking formulations of others [15, 7],

the curve representation is in terms of B-splines.

Quadratic splines are used, with the possibility of mul-

tiple knots for vertices. The tracking framework de-

scribed here follows an earlier framework [6] but is

generalised to allow any learned motion model to be

used in the prediction phase of tracking.

2.1 Curve representation

Curves are represented as parametric B-splines with

N spans and N

c

control points.

x(s; t) = B(s)X(t) and y(s; t) = B(s)Y(t); 0 � s � N

where X = (X

1

; ::; X

N

c

)

T

and similarly for Y. The

elements of X and Y are simply the x; y coordinates

of the set of control points (X

m

; Y

m

) for the B-spline.

The number of control points is equal to the number of

spans | N

c

= N | for closed curves and N

c

= N +d

for open ones (with, in each case, appropriate vari-

ations where multiple knots are used to vary curve

continuity). The vector B(s) consists of blending co-

e�cients de�ned by

B(s) = (B

1

(s); :::; B

M

(s))



where B

m

is a B-spline basis function [9, 5] appropriate

to the order of the curve and its set of knots.

A state vector Q is de�ned:

�

X

Y

�

= WQ+

�

X

Y

�

to generate the space of allowed deformations of the

curve, relative to a \hand-drawn" template (X;Y),

and assumes rigidity, with the possible addition of a

few degrees of freedom for limited non-rigid motion |

details are given in [6]. The dimension of the state-

space N

Q

is typically between 4 and 10. In the case

that the object is planar or nearly so and the �eld

of view is small, the Q-space is an \a�ne" subspace

generated by the template itself, and de�ned by a W -

matrix of the following form:

W =

�

1 0 X 0 0 Y

0 1 0 Y X 0

�

; (1)

so that N

Q

= 6, and where the N

c

-vectors 0 and 1 are

de�ned by:

0 = (0; 0; ::; 0)

T

1 = (1; 1; ::; 1)

T

:

2.2 Discrete-time motion model

It is natural to model the motion of an object in con-

tinuous time; discrete time enters only when the mea-

surement process is considered. In the case of video

imagery, measurements are made synchronously at a

sample interval �. In between sampling epochs, con-

tinuous equations of motion can be integrated [10], to

give X

n+1

� X ((n + 1)�) in terms of X

n

� X (n�).

The resulting discrete model has the form

X

n+1

� X = A(X

n

� X ) +

�

0

Bw

n

�

: (2)

The matrix coe�cient A is a 2N

Q

� 2N

Q

matrix, de�n-

ing the deterministic part of the dynamics.

Without loss of generality, A and X can be stan-

dardised to the forms

A =

0

@

0 I

A

0

A

1

1

A

and X =

�

Q

Q

�

: (3)

Then the equations of motion are simpli�ed to the

standard form:

Q

n+2

= A

0

Q

n

+A

1

Q

n+1

+(I�A

0

�A

1

)Q+Bw

n

: (4)

As for the stochastic component of the discrete dy-

namics, at each time n, thew

n

are independent vectors

of independent unit normal random variables. This

noise process is then transformed by the matrix B

which couples the driving noise into the various natural

modes of the deterministic dynamics. In fact B is not

completely observable, only the covariance C = BB

T

can be computed; this is because the probability distri-

bution for w, being a vector of i.i.d. normal variables,

is (it is easily shown) invariant to orthogonal transfor-

mations of w.

2.3 Measurement model

In an earlier framework [6], measurement was repre-

sented as a continuous time process, not because this

is a realistic model | after all, video is a synchronous

sampled data stream | but because it is tractable in

the sense of facilitating analysis of the tracker's perfor-

mance as a control system. Here however, the learned

motion models are too varied to allow the kind of per-

formance analysis that was possible for constant veloc-

ity models. Therefore, in this paper, a synchronous,

discrete-time measurement model is used throughout.

Given an estimator (see next section)
^
r(s; t) for the

contour r(s; t), the visual measurement process at time

t consists of casting rays along normals
^
n(s; t) to the

estimated curve and, simultaneously at certain points

s along the curve, measuring the innovation �(s; t) of a

feature (typically a high contrast edge) along the ray,

so that

�(s; t) = [r(s; t)�
^
r(s; t)]:

^
n+ v(s; t) (5)

where v(s; t) is a scalar noise variable, assumed gaus-

sian, with a variance �

2

that will be taken to be con-

stant, both spatially and temporally. De�ning mea-

surement to be along the normal only is essential as

displacement tangential to the curve is unobservable,

the well-known \aperture problem" of visual motion

[12].

For incorporation into a tracking �lter, we need to

express � in terms of the state vector X , by means of

a measurement matrix H(s):

�(s; t) = H(s)(

^

X �X ) + v(s; t) (6)

where the measurement matrix H(s) is:

H(s) =

�

^
n(s)

T


 B(s) 0

�

W; (7)

in which 
 denotes the \Kronecker product" [4] of two

matrices.

2.4 Tracker

The system model and measurement model are now

combined in a standard way [10] to form a Kalman

�lter for visual curve tracking. In order to collect a

training set, some form of un-trained tracker is re-

quired. Since the dynamics of the moving object are

unknown at this stage it is necessary to use a tracker

with reasonable default dynamics, based on constant

velocity with homogeneous and isotropic plant noise

[6].

3 System identi�cation

The learning task is now to estimate the coe�cients

A

0

; A

1

; B from a training sequence Q

1

; ::Q

m

, gath-

ered at the image sampling frequency of 1=� = 50Hz.

As mentioned earlier, it is impossible in principle to

estimate B uniquely, but the covariance coe�cient

C = BB

T

can be determined, from which a standard

form for B can be computed as B =

p

C, applying the

square root operation for a square matrix [4].



For simplicity of notation we assume that the mean

Q has been subtracted o�:

Q! Q�Q:

The log-likelihood function for the multivariate normal

distribution is then, up to a constant:

L(Q

1

; ::Q

n

jA

0

; A

1

; B) = (8)

�

1

2

m�2

X

n=1

�

�

B

�1

(Q

n+2

� A

0

Q

n

� A

1

Q

n+1

)

�

�

2

�(m � 2) log detB:

Now the problem is to estimate A

0

; A

1

and C = BB

T

by maximising the log-likelihood L. Maximising �rst

with respect to A

0

; A

1

, it will be shown that separabil-

ity holds | maxima with respect to A

0

; A

1

turn out

to be independent of the value of C. Equivalently to

maximising L we minimise

m�2

X

n=1

�

�

B

�1

(Q

n+2

� A

0

Q

n

� A

1

Q

n+1

)

�

�

2

with respect to A

0

; A

1

. Now this function can be ex-

panded as

f(A

0

; A

1

) = tr(ZC

�1

)

where

Z = S

22

+ A

1

S

11

A

T

1

+A

0

S

00

A

T

0

�2S

21

A

T

1

� 2S

20

A

T

0

+ 2A

1

S

10

A

T

0

and

S

ij

=

m�2

X

n=1

Q

n+i

Q

T

n+j

; i; j = 0; 1; 2; (9)

the second-order moment matrices for the multivariate

time-sequence Q

n

; n = 1; ::;m. Now, completing the

square in Z, with respect to both A

0

and A

1

, we can

rewrite Z as

Z(A

0

; A

1

) = Z

0

+ Z

0

where Z

0

is a constant matrix and

Z

0

= (A

1

�

^

A

1

)S

11

(A

1

�

^

A

1

)

T

+(A

0

�

^

A

0

)S

00

(A

0

�

^

A

0

)

T

+2(A

1

�

^

A

1

)S

10

(A

0

�

^

A

0

)

T

and where

^

A

0

;

^

A

1

are the solutions of the simultaneous

equations

S

20

�

^

A

0

S

00

�

^

A

1

S

10

= 0 (10)

S

21

�

^

A

0

S

01

�

^

A

1

S

11

= 0: (11)

Assuming the minimum of f exists (easily shown to be

the case), f must be convex, so the variable term, the

quadratic form tr(ZC

�1

), must be positive de�nite,

achieving its minimum of 0 when

A

0

=

^

A

0

and A

1

=

^

A

1

:

These conditions are independent of the value of C |

the separability condition as required.

Having obtained estimators for A

0

and A

1

, now C

can be estimated. Rewriting (8) as

L = �

1

2

tr(ZC

�1

) +

1

2

(m � 2) logdetC

�1

;

�xing A

0

=

^

A

0

; A

1

=

^

A

1

, and extremising with

respect to C

�1

(using the identity @(detM )=@M �

(detM )M

�T

) we obtain

^

C =

1

m� 2

Z(

^

A

0

;

^

A

1

); (12)

which can be computed e�ciently using the moments

S

ij

.

4 Learning rigid motion

4.1 Learning in con�guration space

Three training sets are used here, each involving one

component of rigid body motion, namely, \zoom", \ro-

tation" and \
ap". After training, each of the three

trackers follows motions similar to the ones in the re-

spective training sets, but will not follow the other two

rigid body motions. This is illustrated in �gure 1.

4.2 Learning in phase-space

Con�guration-space training, as demonstrated above

only captures the static component of the object-

model. The next experiment demonstrates the power

of incorporating learned dynamics into a curve tracker.

A training set of vertical, oscillatory, rigid motion has

been generated and used to learn motion coe�cients

A;B. Testing of the trained tracker, incorporating the

learned motion, is done against an un-trained, default

tracker. The test sequences consist of rapid, verti-

cal, oscillatory motions of a hand. The sequences are

stored on video so that fair comparisons can be made,

using the standard sequences, of the performance of

di�erent trackers. The trained tracker (�gure 2) fol-

lows the motion successfully, right up to a rate of

around 3 cycles per second. The untrained trackers

cannot achieve this. Snapshots in �gure 2 which show

that when the measurement process fails due to ex-

cessive lag in the tracker, it is the learned dynamics

that e�ectively bridge the hiatus and allow lock sub-

sequently to be recovered. Such trackers can even per-

form against a signi�cantly cluttered background, as

�gure 3 shows.

5 Conclusions

A new learning algorithm has been described for live

tracking of moving objects from video. It supplies

particular dynamics, modelled by a stochastic di�er-

ential equation, to be used predictively in a contour

tracker. The process is bootstrapped by a default

tracker which assumes constant velocity rigid motion



zoom-tuned rotation-tuned 
ap-tuned

zoom data

rotation data


ap data

Figure 1: Filtering single components of a�ne deformationThree training sets have been used here to generate

�lters sensitive speci�cally to zoom, rotation and 
apping. Each �lter is tested on the zoom, rotation and 
apping

training sequences to illustrate the speci�city of training. Accurate tracking is shown in images along the diagonal

in which each �lter is run on its own training sequence. O� the diagonal, when a tuned tracker is applied to an

inappropriate test motion sequence, tracking fails.



Snapshot: 12.0 seconds Snapshot: 12.2 seconds Time-course of vertical position
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Figure 2: Trained tracker for rigid motion, tested with rapid oscillations. A \chirp" test motion, consisting

of vertical oscillations of progressively increasing frequency. For the untrained tracker, lock is lost after about 12

seconds and is unrecoverable another 0.2 second later. The trained tracker is still tracking after 12 seconds, though it

is lagging su�ciently (more than 40 pixels, the size of the measurement window) to have lost lock. The learnt model

takes over tracking temporarily, in the absence of measurements, and by 12.2 seconds lock has been recovered.

Snapshot: 9.0 seconds Time-course of vertical position

0.2

-0.2

-0.1

0.1

0
20     secs

radians

Figure 3: Trained tracker for oscillatory rigid motion, tested against clutter.



driven randomly. It is crucial that the constraints of

rigid-body motion are incorporated | represented in

our algorithm by the Q-space. This is what allows sta-

ble tracking, for which free parameters must be lim-

ited, to be combined with the apparently con
icting

requirement that a large number of control points are

needed for accurate shape representation. Rather than

using arbitrarily chosen dynamics in the tracker they

are acquired by the learning algorithm that allows dy-

namical models to be built from examples. When such

a model is incorporated into a tracker, agility and ro-

bustness to clutter are considerably increased. In tests

with non-rigid motion (�gure 4) the learning algorithm

has proved, so far, to be essential to obtaining any sat-

isfactory tracking performance at all.

Figure 4: Trained trackers for nonrigid motion.

Learning dynamics has proved essential for obtaining

any acceptable performance with lip tracking.
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