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Abstract. We present a completely automatic method for obtaining the
approximate calibration of a camera (alignment to a world frame and
focal length) from a single image of an unknown scene, provided only
that the scene satisfies a Manhattan world assumption. This assump-
tion states that the imaged scene contains three orthogonal, dominant
directions, and is often satisfied by outdoor or indoor views of man-made
structures and environments.

The proposed method combines the calibration likelihood introduced in
[5] with a stochastic search algorithm to obtain a MAP estimate of the
camera’s focal length and alignment. Results on real images of indoor
scenes are presented. The calibrations obtained are less accurate than
those from standard methods employing a calibration pattern or multi-
ple images. However, the outputs are certainly good enough for common
vision tasks such as tracking. Moreover, the results are obtained with-
out any user intervention, from a single image, and without use of a
calibration pattern.

1 Introduction

There is a rich literature of methods for finding camera calibration. If the user
is prepared to construct a calibration pattern and generate images which promi-
nently display the pattern, then well-established techniques can be used to find
the internal parameters of the camera (e.g. [8, 16, 18]). Alternatively, it is com-
mon in structure from motion applications to infer a camera calibration in paral-
lel with scene geometry from a sequence of images of rigid structure — this topic
is covered extensively in [9]. Some applications, in particular visual surveillance,
assume a single fixed monocular camera viewing a scene, often either indoors
or in a city landscape. Because the camera is fixed, structure from motion al-
gorithms cannot be used to estimate camera calibration. On the other hand it
might be impractical to generate images of a calibration grid in each surveil-
lance camera. This paper presents a method for estimating a camera’s internal
calibration parameters along with its world-orientation given a single image of
a somewhat structured scene. Given the limitations of basing the calibration
estimate on a single image of an unknown scene, it is not expected that this
method will have accuracy comparable to a method exploiting multiple images



or known grids. There are applications for which even an approximate calibra-
tion is useful, however, and these include visual tracking and image retrieval or
object recognition tasks including normalising images to be upright or finding
objects in the ground plane.

The Manhattan World assumption was introduced by Coughlan and Yuille
[5] to model scenes in which edges lie predominantly in three orthogonal direc-
tions. They observed that the assumption frequently holds within buildings and
in city streets, and used Bayesian inference to estimate the compass direction of a
calibrated camera held vertically. We make use of the Manhattan framework de-
veloped in [5] and combine it with a stochastic search algorithm which performs
mixture density estimation in an annealing framework [13] to estimate the focal
length and alignment of an unknown camera given a single image of a Manhat-
tan scene. This comprises a significant extension to the method of Coughlan and
Yuille, since they exploited the Manhattan assumption to find a single rotation
parameter only and were thus able to employ an exhaustive search algorithm
which is impractical in the higher-dimensional problem we address. Because the
algorithm searches for camera parameters which align with orthogonal axes in
the world, it implicitly estimates the three vanishing points of those axes. The
use of vanishing points for camera calibration has been studied extensively (e.g.
[3, 11]). McLean and Kotturi [14] introduced a fully automatic vanishing point
detection method, employing clustering techniques to obtain vanishing points
from lines which are segmented from the image in a preprocessing stage. More
recent approaches to calibration using vanishing points include [4, 6, 7, 12]; how-
ever these either require multiple images or manual labelling of detected lines.
Another interesting approach is [1], in which vanishing points in an urban scene
are estimated accurately using the EM algorithm, initialised with the output of a
Hough transform. This method employs an appealing probabilistic formulation,
but still requires explicit edge detection.

The advantages of the approach presented here are twofold. First, by using a
likelihood model for the image together with Bayesian inference we can incorpo-
rate all of the image data without a separate edge-detection and clustering stage.
Second, we exploit the orthogonality constraint explicitly to compute a joint es-
timate of the three vanishing points rather than trying to enforce orthogonality
and estimate the internal calibration after the vanishing points have been found.

2 Bayesian calibration

We represent a camera’s calibration by a parameter vector X defined in sec-
tion 2.1. In principle these parameters can encode the camera’s full projection
matrix along with any additional information of interest, for example lens dis-
tortion parameters. In practice certain parameters such as skew and the position
of the principal point can be held fixed, either because they are assumed known
or because of difficulties in accurately estimating them from the available data.

The distribution p(X|Z) describes the probability of a calibration X given
an image Z. The problem addressed in this paper is that of finding a mode of



this distribution, i.e. a most probable candidate calibration X̂ given Z. In order
to estimate X̂ we write

p(X|Z) ∝ p(Z|X)p(X).

The Manhattan World framework [5] gives a formula for the likelihood p(Z|X)
which is described in section 2.2. We supply a prior p(X) over calibrations and
an estimation algorithm which is described in section 2.3.

2.1 Calibration parameterisation

We represent a camera’s calibration by the following parameter vector

X = {q1, q2, q3, q4, φ}

where the qi comprise a quaternion defining a rotation matrix and φ is the focal
length of the camera in pixels. We initially tried to estimate the principal point
(px, py) of the camera but found that the variance in the estimates was much
greater than the size of the image. Since it is well known that estimation of
the principal point of a camera is very sensitive to noise [9], in the experiments
below we assume the principal point is at the centre of the image. We also tried
to estimate radial distortion parameters, but again found the estimates to be
dominated by noise, so we assume no radial distortion.

Using standard definitions [17] the quaternion q = (q1, q2, q3, q4) maps to a
rotation matrix R given by

R =
1
|q|

q2
1 + q2
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where |q|2 = q2
1 + q2

2 + q2
3 + q2

4 . A projection matrix P can be constructed from
X and the principal point (px, py) as follows:

P =

φ 0 px 0
0 φ py 0
0 0 1 0




0
R 0

0
0 0 0 1



This calibration determines the alignment of the camera with respect to a
world coordinate frame. It fixes an arbitrary value for the translation of the cam-
era centre from the world origin. There remains an unknown scaling to convert
between pixel units and a world metric which could be computed given a manual
measurement of the real-world length of any line in the image which is parallel
to one of the world coordinate axes.



2.2 Manhattan likelihood

Coughlan and Yuille [5] describe a likelihood function for a Manhattan world
image Z given a calibration X which we use unaltered, but for completeness it
is described in this section. The likelihood decomposes into a product of inde-
pendent likelihoods

p(Z|X) =
K∏
k=1

pxk(Z|X)

where xk is an image coordinate. The xk may be sampled densely at each image
pixel, or sparsely on a grid. Sparse sampling has the advantages of reducing
processing time and also of mitigating the effects of the (incorrect) assumption
that the per-pixel likelihoods are independent. We use a sparse grid with pixel
spacing γ. Rather than holding the grid fixed, for example by using the pixel at
the centre of each γ × γ grid square, we got better results by choosing a pixel
at random from each grid square. We perform this randomisation within the
grid independently each time the likelihood is evaluated which has the effect of
averaging the image data rather than only using a 1/γ2 fraction of it.

The Manhattan assumption states that we expect to see many edges aligned
with one of the three world-coordinate axes, so the per-pixel likelihood further
decomposes into a mixture over five models mi

pxk(Z|X) =
5∑
i=1

pxk(Z|mi, X)P (mi)

where models m1,m2,m3 correspond to the event that an edge in one of the
coordinate directions is imaged at point xk, m4 means that an edge in a random
direction is imaged at that point and m5 means that no edge is imaged at xk.
Following [5] we adopt fixed prior probabilities on the five models:

P (mi) = {0.02, 0.02, 0.02, 0.04, 0.90}.

The pixel likelihood for each model is given by

pxk(Z|mi, X) =


pon
xk

(Z)pang
xk

(Z|θixk(X)), i = 1, 2, 3
pon
xk

(Z) 1
2π , i = 4

poff
xk

(Z) 1
2π , i = 5

where pon
xk

(Z) is the probability that an edge in the world was imaged to generate
the pixel values in the neighbourhood of xk and poff

xk
(Z) is the probability that a

non-edge region generated the neighbourhood of xk. Both pon and poff are learnt
functions of the gradient magnitude at xk and details can be found in [5] — the
same learnt functions are used here as in that paper. The angle θixk(X) specifies
the direction in which coordinate axis i will be imaged at xk according to the
hypothesised calibration X and pang

xk
(Z|θ) specifies the probability of observing



the pixels in the neighbourhood of xk given a world edge which should image in
direction θ. Again following [5] we set

pang
xk

(Z|θ) =

{
pθ(α(xk)− θ) if |α(xk)− θ| < θ0

pθ0 otherwise

where α(x) gives the measured gradient direction at an image point x and pθ(λ)
gives the probability of observing an edge deviating by an angle λ from the
predicted direction; pθ is taken to be a triangular distribution with width θ0,
where pθ and pθ0 are normalised so that the pdf is continuous and∫ 2π

θ=0

pang
xk

(Z|θ)dθ = 1.

2.3 Density estimation

The stochastic search algorithm we adopt is a form of iterated importance sam-
pling using kernel density estimates as the importance functions [13]. We aim to
estimate the posterior density f(X) ≡ p(Z|X)p(X) with a set of N weighted par-
ticles (sn, πn); each sn is a choice of calibration parameters, and each πn is a real-
valued weight. The density estimated by the particle set (sn, πn), n = 1, . . . , N
can be thought of as just the weighted sum

∑N
n=1 πnδsn of δ-functions centred

at the particle locations. (Of course the weights should be rescaled so that they
sum to 1 before the density is computed.) Importance sampling is an algorithm
for producing such particle sets. Given a density g(X) which is to be used as an
importance function, the particle set is generated by randomly sampling from g
for n = 1 to N as follows:

sn ∼ g(X), πn =
f(sn)
g(sn)

,

and this is well known to be an increasingly efficient representation of the pos-
terior as g is increasingly similar to f . We therefore adopt an iterated scheme,
performing importance sampling K times with importance functions gk where
g1(X) ≡ p(X) is a prior over X, and gk for k > 1 is formed as a kernel den-
sity based on the particle set resulting from step k − 1. Let Sk be the particle
set (skn, π

k
n) generated by importance sampling using gk at step k, then we can

construct a mixture density gk+1 from Sk as follows:

gk+1 =
N∑
n=1

πknKskn , (1)

where Kskn is a suitable kernel centred at skn.
Since the likelihood is sharply peaked near the true calibration, we adopt an

annealing approach, so that at iteration k rather than using the posterior f we
instead use a distribution with smoothed likelihood

fk(X) = (p(Z|X))β
k

p(X)



where βk ≤ 1 is an annealing parameter and βK = 1 so the final estimate
approximates the desired posterior. We also use a sequence of kernels Kk which
decrease in size (i.e. covariance) as k increases, so the state-space is explored more
widely at early iterations of the algorithm. We vary the number of particles Nk

to use more particles in early iterations.
The kernels Kk, annealing parameters βk, number Nk of particles and num-

ber K of iterations are set by hand: this is known to be an art [13] but we
have not found the algorithm to be particularly sensitive to the choice of these
parameters. In section 3 we run the algorithm multiple times for each example
image using different random seeds to verify that the estimates produced are
consistent.

We use as a prior on X a uniform distribution over the space of rotations
and a uniform distribution within a specified interval for the focal length

φ ∼ U [φmin, φmax].

The uniformly distributed rotation is generated by independently sampling each
qi, i = 1 . . . 4 from a standard normal distribution. The focal length component
of kernel Kkx is taken to be the Gaussian N (φ, σkφ). Placing a kernel in rotation
space is slightly trickier, but we use the following approximation which is valid
for small perturbations in rotation space. To sample from the kernel Ku(u′)
about a rotation u we generate a perturbation rotation v

v = (1, v2, v3, v4), vi ∼ N (0, σv)

and set the perturbed rotation u′ to be the quaternion product u′ = uv. To use
equation (1) we also need a way of evaluating Ku(u′). This is done by setting
v′ = (u′)−1u and writing

v̄′ = (1, v′2/v
′
1, v
′
3/v
′
1, v
′
4/v
′
1).

We can then approximate

Ku(u′) =
4∏
j=2

1√
2πσv

exp(−
(v̄′j)

2

2σ2
v

).

Having estimated the posterior distribution as a particle set SK we would like
to output a single parameter vector X̂ as the calibration estimate. We expect
that the posterior will have many local maxima but be dominated by a peak
at the correct calibration parameterisation. Since it is difficult to estimate the
mode of a particle set, we instead assume that the posterior will be sufficiently
peaked that the mean of the distribution is a good approximation to the mode.
This mean is given by

X̂ =
N∑
n=1

πKn s
K
n .

This weighted mean suffices to estimate the focal length parameter φ but poses
some problems for the quaternion rotation. Recall that X is being estimated to



line up with the three world coordinate axes. Since the axes are not labelled,
there is a 24-fold symmetry: three choices for which axis is vertical, then two
choices for which way is up, then four choices for which way is North. The
analogous problem in one dimension would be to take a weighted sum of angled
lines where the direction of the line α is not important so α is identified with
π+α (a 2-fold symmetry). The solution we adopt is to round each quaternion to
a canonical value in SO(3)/C where C is the octohedral group of the symmetries
of a cube. The rounding algorithm is given in figure 1 but space does not permit
us to include its derivation which can be found in [15]. In the one-dimensional
case this would correspond to adding and subtracting multiples of π to ensure
that each angle lies within the range 0 ≤ α < π. Note that this has not entirely
solved our problem if the particles lie near to the boundary of the rounding cell:
imagine that the angles are clustered around [0, δ) ∪ (π − δ, π). Although there
are solutions to this problem in the simple case of angled lines, we do not know
of a clean solution in the case of SO(3)/C so we currently proceed in the hope
that the problem will not frequently arise.

To round a quaternion u = (a, b, c, d) into a canonical value u′ in SO(3)/C:

1. Set (p, q, r, s) to be the result of sorting the sequence (|a|, |b|, |c|, |d|) into
nonincreasing order, so

p = max(|a|, |b|, |c|, |d|)
s = min(|a|, |b|, |c|, |d|).

2. Find the rotation v ∈ C closest to u. First compute the following three values,
and test which is largest: p, (p+ q)/

√
(2) and (p+ q + r + s)/2.

(a) if p is largest, determine which of the four numbers |a|, |b|, |c|, |d| is largest
(and is hence equal to p), then convert u into v by replacing that number
with +1 or -1 according to its sign and the other three numbers with 0.

(b) if (p + q)/
√

(2) is largest, determine which two of the four numbers
|a|, |b|, |c|, |d| are largest (and hence equal to p and q), then convert u
into v by replacing those numbers with +1 or -1 according to their signs
and the other two numbers with 0.

(c) if (p+q+r+s)/2 is largest, convert u into v by replacing all four numbers
with +1 or -1 according to their signs.

3. Return u′ = uv−1.

Fig. 1. Rounding a quaternion into SO(3)/C.

3 Results

We performed experiments using three different digital cameras, and chose two
focal-length settings for each camera giving six distinct internal calibrations in



all. For each calibration we took multiple pictures of a planar calibration grid
and estimated ground-truth focal length using the code supplied by [2]. We then
took a number of images in our office building with each camera to test our
algorithm. Some of the images could be termed “poorly-conditioned” for our
algorithm. There are at least two types of such poorly-conditioned images. In
the first type, the vanishing points cannot be easily inferred due to the lack of
oriented edges or textures in the image. An obvious example would be an image
in which only a single plane is visible. In the second type of poorly-conditioned
image, two of the three vanishing points corresponding to orthogonal directions
are at infinity. It is well-known that focal length estimation is singular in this case
[3, 9]. A camera pointing directly down a corridor, and parallel to the ground,
is an example of this second type of poorly-conditioned image. We made no
particular effort to avoid poorly-conditioned images in the test set, and have
included results on all of the images we took to demonstrate both successes and
failures of the algorithm.

The same parameter settings were used in all experiments as follows: the
likelihood parameters were a grid spacing γ = 5 and θ0 = 10 degrees, and the
focal length prior was taken to be uniform over [100, 2500] pixels. The algorithm
was run for K = 40 iterations with parameters given in table 1. The algorithm

k 1–10 11–20 21–30 31–40

Nk 2500 1500 1500 1500

σkv 0.0146 0.0104 0.0074 0.0052

σkφ 36.50 26.00 18.50 13.00

βk 0.125 0.250 0.500 1.000

Table 1. Parameter settings for iterations k = 1 to K.

was run ten times with different random seeds for each test image. The estimated
focal lengths are shown in figure 2 along with the ground truth value computed
separately. Reprojected results for one of the test runs on each image are shown
for cameras 1–3 with settings A and B in figures 3–8. White lines are shown
pointing towards the Manhattan vanishing points of the images. The numbering
of the images in figure 2 corresponds to raster order in figures 3–8.

For all cameras except 3A the estimated focal lengths cluster around the
ground truth. Note that when the algorithm correctly finds the focal length
multiple runs with different random seeds produce similar estimates, with the
exception of a single outlier for camera 2A image 3. The algorithm performs
poorly on several of the test images for camera 3A. As can be seen in figure 7,
images 7 and 8 do not contain a significant number of edges in one of the three
world-axes, so it is unsurprising that the calibration is poorly estimated. It is
less apparent why images 1 and 4 pose problems: probably image 1 is too dark
and the edges in the direction pointing away down the corridor in image 4 are
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Fig. 2. Estimated focal lengths. The algorithm was run on several trial images for
each of six camera/focal length settings. For each camera, the ground-truth focal length
is shown as a dashed horizontal line. The algorithm was run ten times on each test
image and the ten estimates are shown here as short horizontal lines. The results are
analysed in section 3.

Fig. 3. Test calibrations for camera 1A. White lines point towards the vanishing
points (shown as a bullseye where visible) of the estimated world axes.



Fig. 4. Test calibrations for camera 1B. White lines point towards the vanishing
points (shown as a bullseye where visible) of the estimated world axes.

Fig. 5. Test calibrations for camera 2A. White lines point towards the vanishing
points (shown as a bullseye where visible) of the estimated world axes.



Fig. 6. Test calibrations for camera 2B. White lines point towards the vanishing
points (shown as a bullseye where visible) of the estimated world axes.

too faint. In addition, image 4 is close to the singular configuration referred to
above, in which two of the vanishing points are at infinity.

4 Conclusion

We demonstrate that a single image of an office environment is sufficient to
automatically calibrate a camera with reasonable accuracy, given some weak as-
sumptions about the nature of the scene statistics and the likely internal camera
parameters. The algorithm can be applied without user intervention, using fixed
parameter settings, and works on a wide variety of images and camera geome-
tries. The method is of practical use for surveillance applications — indeed we
currently use it to provide calibrations for a person-tracking system which has
been presented elsewhere [10].

It may be interesting to extend the Manhattan calibration algorithm to more
general scenes. We have assumed that there are three principal directions present
in the scene and that they are orthogonal, however all of the likelihood calcu-
lations would go through unchanged given an arbitrary number of directions in
arbritrary configuration. It might be possible to refine the search process to esti-
mate an unknown number of principal directions in a scene, to cope for example
with buildings whose rooms are not all rectangular.



Fig. 7. Test calibrations for camera 3A. White lines point towards the vanishing
points (shown as a bullseye where visible) of the estimated world axes.



Fig. 8. Test calibrations for camera 3B. White lines point towards the vanishing
points (shown as a bullseye where visible) of the estimated world axes.

We hope that these results will encourage interest within the field in applying
statistics to geometry. In particular, as here, statistical assumptions may be
useful in regularising geometric vision problems which are widely considered
insoluble when the available data do not determine a unique solution.
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