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ABSTRACT

A development of a method for tracking visual contours is described. Given an \un-trained" tracker,

a training-motion of an object can be observed over some extended time and stored as an image

sequence. The image sequence is used to learn parameters in a stochastic di�erential equation model.

These are used, in turn, to build a tracker whose predictor imitates the motion in the training set.

Tests show that the resulting trackers can be markedly tuned to desired curve shapes and classes of

motions.
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1 Introduction

A signi�cant recent development in real-time visual sensing has been the invention of contour trackers

[25] that can track the motion of silhouettes and surface features. This allows the camera to be treated

as a sparse sensor with consequent processing e�ciency that lends itself to real-time operation.

There are many potential applications, e.g. for instance in biomedical image-analysis (e.g. [3]) in

surveillance (e.g. [23, 33, 31]) and in autonomous vehicle navigation (e.g. [17]) and in hand-eye

coordination for robots [10]. A review of existing methods in curve-tracking can be found in [13].

Real-time video tracking has been achieved for line-drawings [22] and polyhedral structures [27]

and for simple, natural features such as road-edges [17]. Commercial systems (e.g. Watsmart, Oxford

Metrics) are available which track arti�cial markers on live video. Natural point features (e.g. on

a face) but not curves, have been tracked at 10Hz using a workstation assisted by image-processing

hardware [4]. Curve trackers [25, 16, 12] have been demonstrated on modest workstations with some

success.

Several researchers have described Kalman �lter formalisms for tracking of curves and surfaces

[34, 35]. This paper is based on a particular linear �lter for curves which incorporates a mean shape

| a \template", as used by a number of researchers [19, 21, 9, 38]. The tracker used here [11, 12]

also has an a�ne invariance mechanism to accommodate 3D rigid transformations of planar shapes.

We refer to this as the \un-trained" tracker, not yet tuned for motion.

Tuning for speci�c motions, it transpires, is a key ingredient in achieving robust tracking. It can be

done consistently in the Kalman �lter framework by de�ning dynamics within an appropriate state-

space. Deterministic models of visual motion based on oscillatory modes have been used previously

[29]. The generality of motion models is greatly increased by including a stochastic component in

the dynamics, as is done commonly in control theory via stochastic di�erential equations [1]. Even

in the case of planar rigid motion, the dynamics of a visual contour are potentially complex with six

independent modes and many degrees of freedom for the driving noise process.

Therefore, rather than programming ad hoc dynamics, we have developed a procedure to learn

them from extended motion sequences. The procedure will be explained and its e�ectiveness in tuning

a tracker to characteristic classes of motions will be demonstrated. The disadvantage of the method

is that each tuned tracker is e�ective only for the relatively narrow class of shapes and motions on

which it was trained. The advantage is that performance is enhanced compared with an un-trained

tracker, particularly in the ability to ignore background distractors and to follow rapid motions.

2 Tracking framework

The tracker consists of an estimator for a piecewise smooth image-plane curve in motion

r(s; t) = (x(s; t); y(s; t)):

Following the tracking formulations of others [28, 14], the curve representation is in terms of B-splines.

Splines of order d are used, with the possibility of multiple knots for vertices. In our experiments,

splines are usually quadratic (d = 3). The tracking framework described here follows an earlier

one [12] but is generalised to allow any learned motion model to be used in the prediction phase of

tracking.

2.1 Curve representation

Curves are represented as parametric B-splines with N spans and N

c

control points.

x(s; t) = B(s)X(t) and y(s; t) = B(s)Y(t); 0 � s � N

where X = (X

1

; ::; X

N

c

)

T

and similarly for Y. The elements of X and Y are simply the x; y

coordinates of the set of control points (X

m

; Y

m

) for the B-spline. The number of control points is

equal to the number of spans (N

c

= N) for closed curves whereas N

c

= N + d for open curves (with
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appropriate variations, in each case, where multiple knots are used to vary curve continuity). The

vector B(s) consists of blending coe�cients de�ned by

B(s) = (B

1

(s); :::; B

N

c

(s))

where B

m

(s) is a B-spline basis function [18, 7] appropriate to the order of the curve and its set of

knots.

2.2 Tracking as estimation over time

The tracking problem is to estimate the motion of some curve | in examples in this paper it will

be the outline of a hand or of lips. The underlying curve | the physical truth | is assumed to

be describable as a B-spline of a certain prede�ned form with control points X(t);Y(t) varying over

time. The tracker generates estimates of those control points, denoted

^

X(t);

^

Y(t) and the aim is

that the estimates should represent a curve that, at each time-step, matches the underlying curve as

closely as possible. The tracker is based, in accordance with standard practice in temporal �ltering

[20, 5], on two models: a system model and a measurement model. These will be spelt out in detail

later. Broadly, the measurement model speci�es the positions along the curve at which measurements

are made and how reliable they are. The system model speci�es the likely dynamics of the curve

over time, relative to a \template" [19] whose control points, (X;Y), are generated by interactive

software, used to draw spline-curves over a single image captured from live video.

2.3 Rigid body transformations

A tracker could conceivably be designed to allow arbitrary variations in control point positions over

time. This would allow maximum 
exibility in deforming to accommodate moving shapes. However,

particularly for complex shapes requiring many control points to describe them, this is known to lead

to instability in tracking [12]. It occurs when features are temporarily obscured and the tracker is

bumped out of its steady state. The more complex the shape to be tracked, the worse is its instability

when lock is lost, and this is illustrated in �gure 1.

Fortunately, it is not necessary to allow so much freedom. A moving hand, for instance, provided

the �ngers are not 
exing, is a rigid, approximately planar shape. Provided perspective e�ects are

not too strong, a good approximation to the curve shape as it changes over time can therefore be

obtained by specifying Q, a linear vector-valued function of the B-spline coordinates (X;Y). The

Q-parameterisation of the curve embodies the reduced degrees of freedom for motion, which vary

online, leaving intact the full set (X;Y) of geometrical parameters to do justice to the detail of

complex shapes and to be varied o�ine only.

The relationships Q$ (X;Y) between parameterisations are expressed in terms of two matrices

M;W :

 

X

Y

!

= WQ +

 

X

Y

!

and Q =M

" 

X

Y

!

�

 

X

Y

!#

:

The matrices M;W are de�ned in terms of the shape template (X;Y). It is known that for a

planar shape, for instance, just six a�ne degrees of freedom are required [37, 26] to describe the

possible shapes of the curve and this is illustrated in �gure 2. The space of possible Q-vectors is

expressible as a 6-dimensional linear subspace of Q-vectors, and a basis for this subspace is:

B =

( 

1

0

!

;

 

0

1

!

;

 

X

0

!

;

 

0

Y

!

;

 

0

X

!

;

 

Y

0

!)

where the N

c

-vectors 0 and 1 are de�ned by:

0 = (0; 0; ::; 0)

T

1 = (1; 1; ::; 1)

T

:
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Figure 1: Tracking can become unstable when the tracked outline is geometrically complex. This

problem can be overcome however by introducing certain constraints into the con�guration space of

the tracker | see text.
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Figure 2: The six degrees of freedom of a 2D a�ne transformation are illustrated here: translation

vertically and horizontally, rotation and scaling vertically, horizontally and diagonally.
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In that case, the matrices M;W converting B-spline control points (X;Y) to and from the 6-vector

Q can be de�ned, in terms of the template, as follows:

W =

 

1 0 X 0 0 Y

0 1 0 Y X 0

!

(1)

and

M = (W

T

HW )

�1

W

T

H (2)

where

H =

Z

N

0

 

1 0

0 1

!


 (B(s)B(s)

T

) ds;

in which 
 denotes the \Kronecker product"

1

of two matrices. Note that H is the \metric" matrix

that arises from the \normal equations" [30] for the problem of least-squares approximation with

B-splines. Examples of such matrices are given in [12].

Shape models other than planar-a�ne can be treated by using an appropriate Q vector of length

N

Q

with a W matrix of size 2N

c

�N

Q

. In the planar-a�ne case above we had N

Q

= 6. Restricted

a�ne motion would call for N

Q

< 6, for instance rigid 2D translation for which N

Q

= 2. Non-planar

rigid shapes can be treated in a similar way to planar ones except that then N

Q

= 8. For smooth

silhouette curves, it can be shown, N

Q

= 11 is appropriate

2

. Finally, nonrigid motion can be treated

in the same framework. In each case, the M matrix continues to be derived from the W matrix via

the formula (2) above. The table in �gure 3 summarises the hierarchy of models.

Transformations generated by: Dimension no. views

Planar translation X; Y translation 2 1

Planar similarity +X; Y rotation, scaling 4 1

Planar a�ne 3D Euclidean, planar curve 6 1

3D a�ne 3D Euclidean, space curve 8 2(3)

3D a�ne+ 3D Euclidean, silhouette 11 3(6)

Constrained nonrigid + linear deformations +n +n (key-frames)

Unconstrained nonrigid B-spline con�gurations 2N

c

Figure 3: Con�guration sub-spaces | hierarchy for increasing complexity of object and motion.

Given the compact representation of a curve in terms of con�guration-space vector Q, the para-

metric B-spline can be fully reconstructed from it. The reconstruction formula is:

r(s; t) = U(s)Q(t) (3)

where

U(s) =

" 

1 0

0 1

!


B(s)

#

W: (4)

1

The Kronecker product A
 B of two matrices A;B is obtained by replacing each element a of A with the submatrix

aB. The dimensions of this matrix are thus products of the corresponding dimensions of A;B.

2

In the case of silhouettes, however, the Q-vector representation of the curve is an approximation, valid for su�ciently

small changes of viewpoint.
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2.4 Curves in motion

Now a state vector can be chosen according to the order of the di�erential equation that will describe

the motion. Here second order motion is assumed so the state X is de�ned in the following form:

X =

 

Q

Q

0

!

:

The dynamics of the object are then de�ned by the stochastic di�erential equation

_

X = F (X � X ) +

0

B

@

0

G
_
w

1

C

A

: (5)

where F is a 2N

Q

� 2N

Q

matrix de�ning the deterministic part of the dynamics. Its eigenvectors

represent modes of oscillatory motion, and the corresponding eigenvalues give natural frequencies

and damping constants for those modes [2]. The random part of the dynamics are modelled by a

driving noise source w(t) which is a unit N

Q

-dimensional Wiener process | Brownian motion in

continuous time [1] de�ned by its statistical properties:

E[w(t)] = 0 and E[w(t)w(t)

T

] = tI

N

Q

:

(I

r

denotes the r � r identity matrix.) The form of the noise process corresponds to the modelling

assumption that random processes enter the system only as accelerations, with no direct coupling to

velocities. The covariance coe�cient of random acceleration is then GG

T

and is the observable part

of G that, in principle, can be estimated by a learning algorithm. The mean state X of the contour

incorporates a mean positional displacement (relative to the template), and a mean velocity which

may be taken to be zero or could, in principle, be learned from data.

2.5 Discrete-time model

It is natural to model the motion of an object in continuous time, as we have so far. Discrete time

enters only when the measurement process is considered. In the case of video imagery, measurements

are made synchronously at a sample interval �. In between sampling epochs, the continuous equa-

tions of motion (5) can be integrated [20], to give X

n+1

� X ((n + 1)�) in terms of X

n

� X (n�).

Note that no approximation is introduced here in integrating the continuous dynamics; the discrete

representation is simply a restriction of the continuous one to the sampling epochs.

The discrete model has the form

X

n+1

�X = A(X

n

� X ) +

 

0

Bw

n

!

: (6)

The matrix coe�cient A is a 2N

Q

� 2N

Q

matrix, de�ning the deterministic part of the dynamics.

Its eigenvectors represent modes, as before, in the continuous case. In fact the discrete dynamics

matrix A is simply related to the continuous one by

A = expF� (7)

so that for an eigenvalue � of A, there is a corresponding (complex) eigenvalue of F , from which

frequency ! and damping constant � can be computed:

� � + i! =

1

�

log�: (8)

Without loss of generality, A can be standardised to the form

A =

0

B

@

0 I

A

0

A

1

1

C

A

(9)
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so that X must be of the form

X =

 

Q

Q

!

depending on mean position in the form of the displacement Q but not on mean velocities (which

now, in the discrete case, are carried by the A-matrix).

In that case, the equations of motion are simpli�ed to the standard form:

Q

n+2

= A

0

Q

n

+A

1

Q

n+1

+ (I �A

0

� A

1

)Q+ Bw

n

: (10)

As for the stochastic component of the discrete dynamics, at each time n, the w

n

are independent

vectors of independent unit normal random variables. This noise process is then transformed by

the matrix B which couples the driving noise into the various natural modes of the deterministic

dynamics. In fact B is not completely observable, only the covariance C = BB

T

can be computed;

this is because the probability distribution for w, being a vector of i.i.d. normal variables, is (it is

easily shown) invariant to orthogonal transformations of w.

2.6 Measurement model

In an earlier framework [12], measurement was represented as a continuous time process, not because

this is a realistic model | after all, video is a synchronous sampled data stream | but because

it is tractable in the sense of facilitating analysis of the tracker's performance as a control system.

Here however, the learned motion models are too varied to allow the kind of performance analysis

that was possible for constant velocity models. Therefore, in this paper, a synchronous, discrete-time

measurement model is used throughout.

Given an estimator (see next section)
^
r(s; t) for the contour r(s; t), the visual measurement process

at time t consists of casting rays along normals
^
n(s; t) to the estimated curve and, simultaneously at

certain points s along the curve, measuring the relative position �(s; t) of a feature (typically a high

contrast edge) along the ray, so that

�(s; t) = [r(s; t)�
^
r(s; t)]:

^
n(s; t) + v(s; t) (11)

where v(s; t) is a scalar noise variable, assumed gaussian, with a variance �

2

that will be taken to

be constant, both spatially and temporally. De�ning measurement to be along the normal only is

essential as displacement tangential to the curve is unobservable, the well-known \aperture problem"

of visual motion [24].

Each measurement � is actually an \innovation" measure [5] because it is taken relative to the

estimated position
^
r(s; t). This is convenient for tracking because innovation is a form of error signal,

ready to be added in, via an appropriate gain, to the estimated state. In order to compute this gain,

we need �rst to express � in terms of the state vector X , by means of a measurement matrix H(s):

�(s; t) = H(s; t)(

^

X � X ) + v(s; t) (12)

where, from (3), (4) and (11),

H(s; t) =

�

^
n(s; t)

T


B(s) 0

�

W (13)

3 Tracking algorithms

3.1 Full time-varying �lter

Following standard practice in �ltering, the estimator

^

X (t) in state-space evolves in two phases [20]:

prediction and measurement. For each phase there is a 1st order (mean) and 2nd order (covariance)

update equation.
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The prediction phase is applied once at each time step t��! t. The 1st and 2nd order update

equations are respectively the mean and variance from a simulation of the system dynamics (6):

^

X

n

= A

^

X

n�1

+ (I � A)X (14)

and

P

n

= AP

n�1

A

T

+

0

B

@

0 0

0 C

1

C

A

: (15)

where P

n

is the covariance of the estimate

^

X at time t = n�. In general, the evolution of P over

time has been found to be valuable for contour tracking both in exploiting continuity of motion via

the time-varying Kalman gain (see below), and in recovering from sensing failures using a validation

gate [12].

Following the prediction step for a given time-step t��! t, a number of measurements can be

made, taken by casting normals on the image �eld or frame for that epoch. For each measurement,

the curve estimate is updated as follows:

^

X

n

!

^

X

n

+K�

where �(s) is innovation along normal at s as before. The Kalman gain for that measurement [20] is

K = P

n

H

T

�

HP

n

H

T

+ �

2

�

�1

:

After the measurement has been applied via the Kalman gain to the estimated state

^

X

n

, its covariance

must be updated:

P

n

! (I �KH)P

n

:

3.2 Steady-state �lter

For many of the experiments reported in this paper we maintain steady state Kalman gains for each

measurement in a �xed sequence of measurements. This is e�cient because the computational cost

of recomputing P is avoided, and in practice allows more complex spline curves within the constraint

of full �eld-rate (50Hz) tracking. Of course the bene�ts of variable gain are lost and practically this

limits the recovery performance of the tracker after lock is lost, as the last experiment of the paper

shows. The steady state tracker is the restriction of the full tracker (assuming a stable system) to

the case that

1. the sequence of curve positions s at which measurements are made is �xed from iteration to

iteration

2. the contour is fully locked

3. all transients in the �lter have settled out

4. curve normals do not rotate | in practice we require deviations from 2D translational motion

to be small

Steady state gains for the measurement sequence are computed by allowing the �lter to run fully

locked for a few seconds | it is typically most convenient to do this simply by leaving the tracked

object in its starting position, against a plain background | then freezing the gains, one gain for

each curve normal in the �xed measurement sequence.
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3.3 Bootstrapping

In order to collect a training set, some form of un-trained tracker is required. Since the dynamics of

the moving object are unknown at this stage it is necessary to use a tracker with reasonable default

dynamics. Such a tracker is less powerful than a trained tracker, particularly in clutter and with

rapid motions, as this paper will show. To make up for that loss of performance, the training set

can be gathered from gentle motion against an uncluttered background. To learn rapid motions, it

is necessary to bootstrap, that is: �rst to use a default tracker to learn a relatively slow motion, then

incorporate that learnt motion into a tracker which should then be more agile than the default, and

use it to learn a somewhat faster motion, and so on, repeating the cycle if necessary.

The default trackers are based on constant velocity translational dynamics, with a damped elastic

coupling of shape parameters to those of the template. The stochastic component of the dynamics is

a homogeneous, isotropically distributed random acceleration, as described previously in some detail

[12]. The deterministic component of the object-dynamics for a usable default tracker is given by:

F =

0

B

@

0 I

�(!

2

E + !

02

E

0

) �2(�E + �

0

E

0

)

1

C

A

(16)

where E

0

is a projection matrix onto a certain privileged subspace of curve motions and E projects

on the remainder of the state-space left when the image of E

0

and the subspace of rigid translations

are removed. Therefore I � E � E

0

is a matrix that projects the state Q onto the subspace of

rigid translations, and EE

0

= 0. For example, E

0

could be a projection onto the space of rota-

tions/expansions of the template. This would allow unconstrained, constant-velocity translation and

also independent control over the strength of the template both for rotation/expansion (via �; !)

and for other deformations of shape (via �

0

; !

0

). Further elastic damping parameters can be added to

control translational motion, if desired, but we have found, in practice, that it is usually satisfactory

to leave translational motion unconstrained.

In the discrete implementation, there is a limit to how large an e�ective value of the �; �

0

param-

eters can be achieved [2]. However it is, of course, possible to achieve \hard" settings in which �; ! or

�

0

; !

0

are e�ectively in�nite, simply by using a smaller Q-space that excludes the degrees of freedom

that are to be set \hard". This reduced space is speci�ed by removing columns of the W -matrix in

(1) corresponding to those degrees of freedom.

In later learning experiments reported in this paper, both default and trained trackers are full

Kalman �lters with time-varying gains and spatially distributed validation gate. Earlier experiments

used steady-state trackers, obtained by allowing the full �lter to settle down under conditions of full

feature-lock. The steady-state gains for the default tracker could, in principle, have been obtained

in the same way; instead we use something a little simpler, a form of � � � tracker [20].

4 System identi�cation

The learning task is now to estimate the coe�cients A

0

; A

1

; B from a training sequence Q

1

; ::Q

m

,

gathered at the image sampling frequency of 1=� = 50Hz. As mentioned earlier, it is impossible in

principle to estimate B uniquely, but the covariance coe�cient C = BB

T

can be determined, from

which a standard form for B can be computed as:

B =

p

C; (17)

applying the square root operation for a positive de�nite square matrix [6].

The learning process is outlined below. First, to avoid over�tting, the state space must be

restricted, during learning, to a low-dimensional subspace. This could be the six-dimensional \a�ne"

subspace of the state space or some other space spanning an appropriate combination of rigid and

non-rigid degrees of freedom. Secondly, Maximum Likelihood Estimation (MLE) is implemented via

least-squares minimisation to obtain discrete-time system parameters. The result is a tracker tuned

to those a�ne motions that occurred in the training-set.
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4.1 Estimation for one-dimensional variation

First the estimation algorithm is described for the simple case of a one-dimensional particle | no

curve or splines are involved here for the sake of tutorial simplicity, just one number describing

the position of the particle along a rail. The algorithm estimates a continuous time, second order

model for particle position x(t) so the state-space is de�ned in terms of Q(t) � x(t). From (6), for the

sampled system with variables x

n

� x(n�), the coe�cientsA

0

; A

1

; B become scalars denoted a

0

; a

1

; b.

For simplicity we will take the mean (template) x = 0 so that the quantity x

n+2

� a

0

x

n

� a

1

x

n+1

is

a zero-mean scalar normal variable bw

n

, for each n, with unknown variance b

2

. The log-likelihood

function is de�ned up to an additive constant by

L(x

1

; ::x

n

ja

0

; a

1

; b) � log p(x

1

; ::x

n

ja

0

; a

1

; b) + const

but

p(x

1

; ::x

n

ja

0

; a

1

; b) =

Y

n

p(w

n

= (x

n+2

� a

0

x

n

� a

1

x

n+1

)b

�1

)

so, using the normality of the distribution p(::),

L(x

1

; ::x

n

ja

0

; a

1

; b) = �

1

2b

2

m�2

X

n=1

(x

n+2

� a

0

x

n

� a

1

x

n+1

)

2

� (m� 2) log b;

up to an additive constant. The MLE for the coe�cients a

0

; a

1

; b is obtained from the maximisation

of the quadratic likelihood function. It is clear in this univariate case that the minimisation over b

factors out, so that estimates â

1

; â

2

are determined by

(â

0

; â

1

) = arg min

a

0

;a

1

m�2

X

n=1

(x

n+2

� a

0

x

n

� a

1

x

n+1

)

2

;

obtained as the solution of the simultaneous equations

s

20

� â

0

s

00

� â

1

s

10

= 0 (18)

s

21

� â

0

s

01

� â

1

s

11

= 0; (19)

where

s

ij

=

m�2

X

n=1

x

n+i

x

n+j

; i; j = 0; 1; 2

are discrete auto-correlation measures for the time sequence time-sequence. Now a

0

; a

1

are regarded

as constants, �xed at their estimated values, in the likelihood function, which can be maximised with

respect to b to obtain

^

b:

^

b

2

=

1

m� 2

m�2

X

n=1

(x

n+2

� â

0

x

n

� â

1

x

n+1

)

2

: (20)

4.2 Exercising the learning algorithm

Now the learning of univariate motions is illustrated by the example of a tracked hand in motion.

The oscillation is largely horizontal (�gure 4) but in any case, for the purposes of this illustration,

the horizontal component of motion of the centroid of the tracked curve will be extracted. Once

the learning is done, the learned model (â

0

; â

1

;

^

b) can be simulated by generating pseudo-random

gaussian noise | a synthetic random process | with variance

^

b

2

that drives discrete dynamics with

coe�cients â

0

; â

1

. The sample of random dynamics shown appears plausibly to be drawn from the

same family of random signals as the training set. In this case a model of motion as 2nd order

dynamics driven by noise seems to be adequate.

However, not all data-sets can be represented faithfully by such a model. For example the

oscillatory motion in �gure 5 is not a perfect sinusoid | it was generated by hand. A perfect
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a) c)
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0.1
radians

seconds5
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0.1

0

5 seconds

radians

b) d)

Figure 4: Learning horizontal motion. a) Training sequence of a tracked hand captured at 50Hz

(full video �eld-rate) in oscillatory motion. The initial frame of the hand is shown with a subsequence

of the positions of the tracked curve overlaid. The centroid's horizontal position is displayed as a time-

sequence in b). c) Simulation of the learned system: note that the motion swept out when the learned

dynamics are simulated is similar to the motion in the training set. d) Centroid's horizontal position

for the sequence in c). The synthesised motion appears to have reproduced a signal similar to that in

the training set | observe particularly the width of the half-cycles and the amplitude of the signal.

sinusoid could of course be represented completely by the model, using the second order dynamics

and without recourse to the stochastic component of the model. The imperfect sinusoid cannot, it

turns out, be represented completely; its long-term behaviour eludes the model but its short-term

behaviour, which is of particular use for prediction in trackers, is captured. The horizontal motion

training set, shown as a graph in �gure 5b, is used in the estimation procedure of the previous

section, to obtain discrete parameters a

0

; a

1

; b. They can be interpreted as a damped oscillation

exp��t exp i!t in continuous time, using equation (8), where � = 1:67 and ! = 3:68 giving a period

(2�=!) of 1:7 seconds. This is close to the apparent periodicity of the data set in which there are

between 12 and 13 cycles over 20 seconds, a period of 1:54{1:67 seconds. The decay time constant

of 1=� = 0:6 s is not, however, apparent in the data set. It should be thought of as a coherence time

constant arising because the training set does not �t our ideal model very closely: it contains the

wrong kind of noise, probably closer to white noise than the integrated Brownian motion inherent

in our model. Lastly, b also has a natural physical interpretation, in conjunction with the other

parameters. It is the measure of the amplitude of the noise that drives the process and it can be

shown that the RMS (root-mean-square) amplitude of the modelled process, in the steady state, is

a function of a

0

; a

1

; b. For the model learned from this training set, the RMS amplitude is 0:06 rad,
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a) c)
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b) d)

Figure 5: Learning horizontal oscillation. As for �gure 4, but now for an oscillatory data-set.

a) Training sequence b) Centroid's horizontal position. c) and d) as a) and b) but for simulation of

system learnt from the training set. The synthesised motion has captured the short term behaviour

of the training set (e.g. half-cycles) but, because the motion model is limited to 2nd order, has not

captured the phase-coherence that exists in the training set over longer time-scales.

which appears close to the RMS amplitude of the training set in �gure 5.

To illustrate the learned model, we can simulate, as before. This is done with static initial

conditions, not that the initial conditions have much in
uence beyond the �rst few seconds, given

that the exponential-decay time-constant of the system is less than one second. A sample signal,

generated in this way, is shown in �gure 5c,d. To check for consistency, we can re-learn parameters

from this synthesised signal, treating it as a training set, which gives

!

0

= 3:69 s

�1

; � = 1:75 s

�1

; and RMS amplitude = 0:08rad;

which is close to the parameter set for the learned model. This indicates that the training procedure

is valid, particularly that the sequence is su�ciently long to give repeatable results.

The synthesised signal illustrates a typical sample path from our family of second order stochastic

di�erential equations. It is not, of course, exactly like the training set | it is unlikely that a signal

like the training set would have been produced by the simulation. However the system is the member

of the family of systems that is \closest" to the training set. Broadly, the small scale properties of

the training set have been captured | the period of oscillations and amplitude | but not the large

scale property of signal coherence. Clearly the model that has been learned is not a complete one

but is adequate for tracking, in which the purpose of the dynamical model is to make predictions

over relatively short time-scales whilst relying on data over longer time scales. Such a model, it can
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be argued, is actually more appropriate than a more complete one which, while it may be suitable

for signal recognition, would be too narrowly tuned | insu�ciently general | to track a broad class

of signals which is what is required here.

4.3 Estimation of multivariate system parameters

The general multivariate estimation algorithm follows broadly the line of the univariate one, but the

separability of the estimation of deterministic and stochastic parameters, whilst it still holds, is no

longer so obvious. For simplicity of notation we assume that the mean Q has been subtracted o�:

Q! Q�Q:

The log-likelihood function for the multivariate normal distribution is then, up to a constant:

L(Q

1

; ::Q

n

jA

0

; A

1

; B) = �

1

2

m�2

X

n=1

�

�

�
B

�1

(Q

n+2

�A

0

Q

n

�A

1

Q

n+1

)

�

�

�

2

� (m� 2) logdetB: (21)

Now the problem is to estimateA

0

; A

1

and C = BB

T

by maximising the log-likelihoodL. Maximising

�rst with respect to A

0

; A

1

, it will be shown that separability holds | maxima with respect to A

0

; A

1

turn out to be independent of the value of C. Equivalently to maximising L we minimise

f(A

0

; A

1

) =

m�2

X

n=1

�

�

�
B

�1

(Q

n+2

�A

0

Q

n

�A

1

Q

n+1

)

�

�

�

2

(22)

with respect to A

0

; A

1

. Now this function can be expanded as

f(A

0

; A

1

) = tr(ZC

�1

)

where

Z = S

22

+ A

1

S

11

A

T

1

+ A

0

S

00

A

T

0

� S

21

A

1

� S

20

A

T

0

+A

1

S

10

A

T

0

(23)

�A

1

S

12

� A

0

S

02

+A

0

S

01

A

T

1

and

S

ij

=

m�2

X

n=1

Q

n+i

Q

T

n+j

; i; j = 0; 1; 2; (24)

the second-order moment matrices for the multivariate time-sequence Q

n

; n = 1; ::; m. Now, com-

pleting the square in Z, with respect to both A

0

and A

1

, we can rewrite Z as

Z(A

0

; A

1

) = Z

0

+ Z

0

where Z

0

is a constant matrix, and where

Z

0

= (A

1

�

^

A

1

)S

11

(A

1

�

^

A

1

)

T

+ (A

0

�

^

A

0

)S

00

(A

0

�

^

A

0

)

T

+(A

1

�

^

A

1

)S

10

(A

0

�

^

A

0

)

T

+ (A

0

�

^

A

0

)S

01

(A

1

�

^

A

1

)

T

and

^

A

0

;

^

A

1

are the solutions of the simultaneous equations

S

20

�

^

A

0

S

00

�

^

A

1

S

10

= 0 (25)

S

21

�

^

A

0

S

01

�

^

A

1

S

11

= 0:

Now a minimum of f exists because it is bounded below by 0. It must therefore be a positive de�nite

quadratic form, achieving its minimum when

A

0

=

^

A

0

and A

1

=

^

A

1

:
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These conditions are independent of the value of C | the separability condition as required.

Having obtained estimators for A

0

and A

1

, now C can be estimated. Rewriting (21) as

L = �

1

2

tr(ZC

�1

) +

1

2

(m� 2) log detC

�1

;

�xing A

0

=

^

A

0

; A

1

=

^

A

1

, and extremising with respect to C

�1

[using the identity @(detM)=@M �

(detM)M

�T

] we obtain

^

C =

1

m� 2

Z(

^

A

0

;

^

A

1

); (26)

which can be computed e�ciently from (23).

4.4 Learning zoom

As an illustration of multivariable learning, a sequence of zooming motions of a box is inferred from

training data by the algorithm described above, operating over the 6-dimensional planar-a�ne space

(�gure 6). It is instructive to examine the estimated model parameters. The zoom component of the

sequence is oscillatory with a period of around 2.5s. The modes have complex frequencies (rad/s) of

�82; �57:9; (�54:4� 1:55i); �39:8; �27:2;�9:61; �6:9; (�4:69� 2:9i); (�0:54� 2:76i)

of which the last, with the slowest decay time of around 2 seconds, has a period of 2:3s which

corresponds closely to the period of the training set, around 2.5s. The corresponding mode, expressed

in the basis B, has approximately (within 5%) the form (0; 0; 1; 1; 0; 0) corresponding to pure zoom.

Similarly the 6 � 6 covariance matrix C, when expressed in the a�ne basis B, is dominated by its

central 2� 2 block, corresponding to noise in the zoom process.

4.5 Nonrigid motion

The methods illustrated so far for learning and tracking rigid motion can be extended to non-rigid

motion. The tracking and learning algorithms described earlier continue to apply, but now the

Q-space must be rede�ned to parameterise non-rigid motion of a curve.

The Q-space is extended by rede�ning the transformation matrices M;W of section 2.3. Aug-

menting the earlier de�nition, in which permutations of the template shape (X;Y) make up the W

matrix, the W matrix must be given additional columns re
ecting additional degrees of freedom for

non-rigid motion. This then increases the dimension of the Q vector from 6 to some larger number.

The extra degrees of freedom are derived from key-frames, typical non-rigid deformations, on which

the tracked contour is positioned interactively, as in �gure 7. Keyframes can be added directly to the

subspace by appending each keyframe vector as a column of the W -matrix. Alternatively, a large

set of keyframes can be used and economised to a smaller set using Principal Components Analysis

(PCA), as Cootes et al. [15] and Baumberg and Hogg [8] do. During tracking, the �rst 6 components

of the

^

Q

n

-vector report on the rigid motion, and the remaining components report on non-rigid

motion, so rigid and non-rigid motion can be monitored somewhat independently.

This linear mechanism for handling nonrigidity is in marked contrast to the detailed, nonlinear

kinematic model used by Rehg and Kanade [32]. The advantage of retaining linearity is reduced

complexity (nonlinear models require the computationally more complex Extended Kalman Filter

for tracking [20]) and possibly improved stability. The disadvantage is that the linearly approximated

kinematics are appropriate only for small displacements. Linear approximations are possible for larger

displacements but produce underconstrained kinematic models.

5 Trained �lters

This section investigates the e�ect on tracking performance of replacing default dynamics in the

predictor with speci�c dynamics learned from a training set. The tracking procedure for learned
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a)
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Figure 6: Learning zooming motion. a) A training sequence of 10 seconds duration, captured at

50 Hz by the \default" tracker, tracks an object as it zooms inwards and outwards, spanning a family

of contours as shown. This is used to estimate a system model and then to construct a tracker trained

for the zooming motion. The zoom component of the training sequence in a) is plotted in b) as change

in scale factor vs. �eld number (at 50Hz). It shows a dominant period of about 2.5 seconds.
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Figure 7: Keyframes. Lips template followed by two key-frames, representing interactively tracked

lips in characteristic positions. The key-frames are combined linearly with appropriate rigid degrees

of freedom, to give a Q-space suitable for use in a tracker for non-rigid motion.
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motions has been implemented for real-time (50 Hz) tracking on a SUN Sparc-II computer with

Datacell S2200 framestore, without the need for any additional hardware. It has been applied to a

variety of training sequences with di�erent objects, involving various motions, both rigid and non-

rigid. Trackers have been trained for the whole a�ne subspace corresponding to 3D rigid motion of

a hand, including translation parallel to the image plane, longitudinal motion (zoom), image plane

rotation, and rotation about an arbitrary three-dimensional axis. They have also been trained to

follow nonrigid motions both of hands and of lips.

For both rigid and nonrigid motions, tracking performance can be greatly enhanced by training.

There are two contributory e�ects here, one static and one dynamic | one in con�guration-space

and one in phase-space. The static e�ect is that learning characterises the likely con�gurations

| both shapes and positions | of the visible contour; in the tracker this helps maintain a closer

match between the tracked and the actual contour. Algorithms to learn static models have been

demonstrated previously [21, 15] but such algorithms are unable to exploit training sets that are

gathered as time-sequences. For static algorithms, permuting the order of elements in a training

set has no e�ect on the model learned. Our algorithm exploits the time-sequence structure by

simultaneously learning static and dynamic components of an object model. Learning is in phase-

space, rather than merely in con�guration-space. Once learned, the dynamic component of the model

is used to great e�ect in tracking to bridge any hiatus in the measurement process, either when the

target is temporarily obscured or when spatial lag is so great that the target momentarily falls outside

the measurement window.

5.1 Rigid hand-motion: con�guration-space training

Three training sets are used here, each involving one component of rigid body motion, as in �gure 8.

The hand is almost planar, so the motions result in 2D a�ne deformations in the image plane. After

training, the tracker follows motions similar to the ones in the training set, but will not follow other

rigid body motions. This is illustrated in �gure 9. Component motions of this kind can be built

up individually and combined to form the predictor for a single tracker. The tracker is then tuned

to follow not merely the disjunction of the component motions, but also any linear combination of

them. Thus learning can be achieved in a modular fashion, and the result exhibits some degree of

generalisation. How can combination of learned models be achieved? Mere concatenation of data-sets

for each of the individual components does not quite work because the resulting learned model would

be in
uenced by the abrupt transitions between data-sets, which are spurious. Instead, maximum

likelihood estimates of system parameters are achieved by adding moments S

i;j

(24) from each of the

datasets:

S

i;j

=

X

k

S

(k)

i;j

8i; j

to achieve combined moments for use in the estimation algorithm (25).
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a) b)

c) d)

Figure 8: Training single components of a�ne deformation. a) Hand in rest position. Training

sets are shown for: b) zoom | hand moves towards and away from camera; c) rotation about the

line of sight; d) 
apping | rotation about an axis parallel to the image plane.
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zoom-tuned rotation-tuned 
ap-tuned

zoom data

rotation data


ap data

Figure 9: Filtering single components of a�ne deformation The three training sets from �gure

8 are used here to generate �lters sensitive speci�cally to zoom, rotation and 
apping. Each �lter is

tested on the zoom, rotation and 
apping training sequences to illustrate the speci�city of training.

Accurate tracking is shown in images along the diagonal in which each �lter is run on its own training

sequence. O� the diagonal, when a tuned tracker is applied to an inappropriate test motion sequence,

tracking fails.
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5.2 Hand tracking: phase-space training

Con�guration-space training, as demonstrated above, captures only the static component of the

object-model. The next experiment demonstrates the power of incorporating learned dynamics into

a curve tracker. This time, a training set of vertical, oscillatory, rigid motion has been generated and

used to learn motion coe�cients A;B, similar to the earlier example of learned horizontal motion

(section 4.2). The training set is shown in �gure 10.

0.1

-0.1

radians

seconds

10 20

Figure 10: Training set for rigid, oscillatory, vertical motion. The centroid's vertical position

is displayed as a time-sequence, over the 25 second duration of the training sequence.

Testing of the trained tracker, incorporating the learned motion, is done against two forms of

the un-trained, default tracker. In both forms, translational motion is allowed freely. The �rst

form is \sti�", indicating that motion other than translation is resisted strongly | the values of

�; !; �

0

; !

0

in (16) are large (� = 45s

�1

; ! = 31s

�1

; �

0

= 50s

�1

; !

0

= 37s

�1

where �; ! govern non-

a�ne deformations and �

0

; !

0

govern a�ne ones). The second form is \hard" in which those values

are e�ectively in�nite; then the shape of the estimated curve is truly rigid, having only translational

degrees of freedom.

The test sequences consist of rapid, vertical, oscillatory motions of a hand. The sequences are

stored on video so that fair comparisons can be made, using the standard sequences, of the perfor-

mance of di�erent trackers. Two sequences are made: one of regular oscillation against distracting

background features | \clutter", the other of oscillatory motion with gradually increasing frequency

| a \chirp". Results of the clutter test are shown in �gure 11. In this case the sti�-untrained tracker

fails but the trained tracker succeeds. However the hard-untrained tracker also succeeds because it

has a stronger shape-memory than the sti�-untrained tracker. This indicates that it is the trained

tracker's learned shape, more than its learned dynamics, that enables it to track successfully in clut-

ter. In the case of the chirp test, the results which are shown in �gure 12 are rather di�erent. In this

test it is the rapidity of the oscillations that make tracking di�cult. The trained tracker follows the

motion successfully, right up to a rate of around 3 oscillations per second. Neither of the untrained

trackers can achieve this which indicates that it is the learned dynamics of the trained tracker that

enables it to succeed here. This is con�rmed by the snapshots in �gure 12 which show that when the

measurement process fails due to excessive lag in the tracker, it is the learned dynamical model that

e�ectively bridges the hiatus and allows lock subsequently to be recovered.

5.3 Nonrigid motion: lips

The feasibility of tracking lip movements frontally when lip high-lighter is worn (�gure 13), was

demonstrated by Kass et al [25] and our system can do this at video-rate. This paradigm can be

extended by using highlighter on a number of facial features, as Terzopoulos and Waters [36] did. It

is expected that this could be used with our real-time trainable tracker to build an e�ective front-end

for actor-driven animation, without recourse to expensive virtual-reality input devices.
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Snapshot: 9.0 seconds Time-course of vertical position
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Figure 11: Trained tracker for oscillatory rigid motion, tested against clutter. The two

untrained trackers and the trained tracker are compared here using a \clutter" test-sequence. After

9.0 seconds, the sti�-untrained tracker is distracted by background clutter and loses lock, but the

hard-untrained and the trained trackers continue to track successfully.



Learning to track the motion of visual contours 23

Snapshot: 12.0 seconds Snapshot: 12.2 seconds Time-course of vertical position
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Figure 12: Trained tracker for rigid motion, tested with rapid oscillations. A \chirp" test

motion, consisting of vertical oscillations of progressively increasing frequency, is tracked by each

of three trackers: untrained-sti�, untrained-hard and trained. For the untrained trackers, lock is

lost after about 12 seconds and is unrecoverable another 0.2 second later. The trained tracker is

still tracking after 12 seconds, though it is lagging su�ciently (more than 40 pixels, the size of the

measurement window) to have lost lock. The learnt model takes over tracking temporarily, in the

absence of measurements, and by 12.2 seconds lock has been recovered.
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Figure 13: Tracking a frontal view of lips is possible if lip highlighter is worn, to ensure adequate

contrast with skin.

Tracking lips side-on, whilst arguably less informative, has the advantage of working in normal

lighting condition without cosmetic aids. This could be used to turn the mouth into an additional

workstation input-device. Deformations of the lips for two sounds are shown in �gure 14. Two

Figure 14: Single-syllable training. Deformations of the mouth are shown corresponding to the

sounds a) \Pah" and b) \Ooh".

trackers are trained individually for the sounds \Ooh" and \Pah", and the resulting selectivity is

shown in �gures 15 and 16. It is clear from these results that the tuning e�ect for individual sounds

is strong. Again, as in the earlier 
ap/zoom/rotate demonstration for rigid motion, the point is

not that this particular tuning is operationally desirable, but that it demonstrates the power of the

tuning process. Operationally, to render assistance to speech analysis, it is necessary to learn the

repertoire of lip-motions that occurs in typical connected speech.
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5.4 Connected speech

Now, complexity is increased by training on connected speech. Two-stage training is used. In the

bootstrap stage, the default tracker followed a slow-speech training sequence which is then used,

via the learning algorithm, to generate a tracker. This tracker is capable of following speech of

medium speed and is used to follow a medium-speed training sequence, from which dynamics for a

full-speed tracker are obtained. The trained tracker is then tested against the default tracker, using

a test sequence entirely di�erent from the training sequences. Two deformation components of lip

motion are extracted, at 50Hz, as \lip-reading" signals. The more signi�cant one, in the sense that

it accounts for the greater part of the lip motion, corresponds approximately to the degree to which

the lips are parted. This component is plotted both for the default tracker and the partly and fully

trained ones in �gure 17. It is clear from the �gure that the trained �lter is considerably more agile.

In a demonstration in which the signal is used to animate a head, the untrained �lter is able to follow

only very slow speech, whereas the trained �lter successfully follows speech delivered at a normal

speed.

5.5 Nonrigid hand motions

Both rigid and nonrigid motion of a hand can be used as a 3D input device. The freedom of movement

of the hand is illustrated in �gure 18, with rigid motion picked up to control 3D position and attitude,

and nonrigid motion signaling button pressing and \lifting". The tracker output | the components

of

^

Q varying over time | have successfully been used to drive a simulated object around a 3D

environment.

5.6 Full Kalman �lter

Finally, for the case of rigid motion of the hand, the e�ect of training is shown in the full Kalman �lter

with time-varying gains and validation gates operating on the measurement process. Allowing the

validation gate to operate enhances the tracker's powers of recovery from loss of lock. Performance

is reduced, not only when training is omitted (as we have already seen in numerous examples), but

also when Kalman gains are �xed. This is clearly demonstrated in �gures 19 and 20.

6 Conclusions

A new learning algorithm has been described for live tracking of moving objects from video. It

supplies particular dynamics, modelled by a stochastic di�erential equation, to be used predictively

in a contour tracker. The process is bootstrapped by a default tracker which assumes constant

velocity rigid motion driven randomly. It is crucial that the constraints of rigid-body motion are

incorporated | represented in our algorithm by the Q-space. This is what allows stable tracking, for

which the number of free parameters must be limited, to be combined with the apparently con
icting

requirement that a large number of control points are needed for accurate shape representation.

Rather than using arbitrarily chosen dynamics in the tracker they are acquired by a learning algorithm

that allows dynamical models to be built from examples. When such a model is incorporated into a

tracker, agility and robustness to clutter are considerably increased. In the case of non-rigid motion,

the learning algorithm has proved, so far, to be essential to obtaining any satisfactory tracking

performance.

The advent of workstations with integral cameras and framestores (designed to facilitate tele-

conferencing) brings an opportunity for these algorithms to be put to work. Unadorned body parts

become usable input devices for graphics. This has potential applications in user-interface design, au-

tomation of animation, virtual reality, surveillance, the design of computer aids for the handicapped

and perhaps even low-bandwidth teleconferencing.

This exploration of the learning of visual motion raises many issues. For example: how can

the acuity of the tuning of a model, or conversely its generality, be controlled? Can the learning

paradigm be developed to allowmodel-based recognition based on visual motion, using tuned trackers
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as a bootstrap stage? Is it possible to learn disjunctions of motion models, either by raising the model

order or by explicit model switching?
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Figure 15: Filter selectivity for sounds. A test sequence in which the sound \pah" is repeated, is

tracked by �lters trained on the sounds \pah" a) and \ooh" b) | the pictures show the area swept

out by successive positions of the tracked contour. Note that the \pah" �lter successfully tracks the

opening/shutting deformation of the mouth whereas only lateral translation of the head is tracked

by the \ooh" �lter. The nonrigid deformation containing the speech information is lost because a

tracker trained on \ooh" cannot accommodate deformations associated with \pah". Motion signals

corresponding to a), b) are plotted in terms of an appropriate scalar component of estimated motion

in c) and d) respectively. Tracked contours approximately 4.1s after the start of the signal are shown

in e) and f) respectively. The signal c) shows clear pairs of troughs (shutting of the mouth) and

peaks (opening), one pair for each \pah" but in d) (tracker trained on \ooh") there is minimal

opening/shutting response.
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Figure 16: Filter selectivity for sounds. As a companion to �gure 15, repeated \ooh" sounds are

tracked by �lters trained on \ooh" a) and \pah" b), with corresponding motion signals in c) and d)

and tracked contours, approximately 5.7s after the start of the signal, in e) and f) respectively. The

component of motion plotted here is di�erent to the one in �gure 15, now being appropriate to the

\ooh" signal. As before, the appropriately trained �lter shows a greater response. The swept motion

in b) is pure translation whereas in a) the central bulge in the white region indicates the deformation

that accompanies the \ooh" sound. The signal in d) is attenuated compared with the signal in c) and

is also noisier.
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Figure 17: Trained lip tracker. Training a tracker for side-on viewing of speaking lips greatly

enhances tracking performance. The graphs show plots from the un-trained, default �lter, the boot-

strapped �lter after one training cycle and lastly the �lter after a second training cycle. One compo-

nent of deformation of the lips is shown, corresponding to the degree to which the mouth is open |

the space of deformations spanned by the �rst two templates in �gure 7. Note the considerable loss of

detail in the default �lter and the overshoots in both default and bootstrapped �lters, compared with

the fully trained �lter. (The sentence spoken here was \In these cases one would like to reduce the

dependence of a sensory information processing algorithm on these constraints if possible.".)
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a) b)

c) d)

e) f)

Figure 18: The unadorned hand as a 3D mouse. A hand in its home position (a) can move on

the xy-plane of the table (b) to act as a regular mouse but can also rise in the z direction (c) and the

zooming e�ect is picked and used to compute z. Rotation can also be tracked (d). Nonrigid motion

tracking can be used to pick up signals. For instance (e) signals a button-press and (f) signals the

analogue of lifting a conventional mouse to reposition it.
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Snapshot at 10.0 seconds Snapshot at 17.6 seconds

Full, trained �lter

Steady-state, trained �lter

Full, un-trained �lter

Figure 19: Trained full Kalman �lter. Performance in tracking of a test sequence is shown for the

full (time-varying), trained Kalman �lter versus a steady state version and an un-trained version of

the same �lter. Snapshots clearly show eventual failure of tracking, on a particular �xed test motion

sequence, for all except the full, trained �lter | see also the next �gure.
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Figure 20: Trained full Kalman �lter. Tracking failures for the untrained and steady-state �lters,

shown in the snapshots of the previous �gure, are displayed graphically here.


