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Abstract

Continuously-Adaptive Discretization for Message-Passing (CAD-MP) is a new
message-passing algorithm for approximate inference. Most message-passing al-
gorithms approximate continuous probability distributions using either: a family
of continuous distributions such as the exponential family; a particle-set of dis-
crete samples; or a fixed, uniform discretization. In contrast, CAD-MP uses a dis-
cretization that is (i) non-uniform, and (ii) adaptive to the structure of the marginal
distributions. Non-uniformity allows CAD-MP to localize interesting features
(such as sharp peaks) in the marginal belief distributions with time complexity that
scales logarithmically with precision, as opposed to uniform discretization which
scales at best linearly. We give a principled method for altering the non-uniform
discretization according to information-based measures.CAD-MP is shown in
experiments to estimate marginal beliefs much more precisely than competing ap-
proaches for the same computational expense.

1 Introduction

Message passing algorithms such as Belief Propagation (BP)[1] exploit factorization to perform
inference. Exact inference is only possible when the distribution to be inferred can be represented
by a tree and the model is either linear-Gaussian or fully discrete [2, 3]. One attraction of BP is
that algorithms developed for tree-structured models can be applied analogously [4] to models with
loops, such as Markov Random Fields.

There is at present no general-purpose approximate algorithm that is suitable for all problems, so
the choice of algorithm is governed by the form of the model. Much of the literature concentrates on
problems from statistics or control where point measurements are made (e.g. of an animal population
or a chemical plant temperature), and where the state evolution is non-linear or the process noise
is non-Gaussian [5, 6]. Some problems, notably those from computer vision, have more complex
observation distributions that naturally occur as piecewise-constant functions on a grid (i.e. images),
and so it is common to discretize the underlying continuous model to match the structure of the
observations [7, 8]. As the dimensionality of the state-space increases, a naı̈ve uniform discretization
rapidly becomes intractable [8]. When models are complex functions of the observations, sampling
methods such as non-parametric belief propagation (NBP) [9, 10], have been successful.

Distributions of interest can often be represented by a factor graph [11]. “Message passing” is a
class of algorithms for approximating these distributions, in which messages are iteratively updated
between factors and variables. When a given message is to be updated, all other messages in the
graph are fixed and treated as though they were exact. The algorithm proceeds by picking, from
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a family of approximate functions, the message that minimizes a divergence to the local “exact”
message. In some forms of the approach [12] this minimization takes place over approximate belief
distributions rather than approximate messages.

A general recipe for producing message passing algorithms,summarized by Minka [13], is as fol-
lows: (i) pick a family of approximating distributions; (ii) pick a divergence measure to minimize;
(iii) construct an optimization algorithm to perform this minimization within the approximating
family. This paper makes contributions in all three steps ofthis recipe, resulting in a new algorithm
termedContinuously-Adaptive Discretization for Message-Passing (CAD-MP).

For step (i), we advocate an approximating family that has received little attention in recent years:
piecewise-constant probability densities with a bounded number of piecewise-constant regions. Al-
though others have used this family in the past [14], it has not to our knowledge been employed in a
modern message-passing framework. We believe piecewise-constant probability densities are very
well suited to some problem domains, and this constitutes the chief contribution of the paper. For
step (ii), we have chosen for our initial investigation the “inclusive” KL-divergence [13]—a stan-
dard choice which leads to the well known Belief Propagationmessage update equations. We show
that for a special class of piecewise-constant probabilitydensities (the so-callednaturally-weighted
densities), the minimal divergence is achieved by a distribution of minimum entropy, leading to
an intuitive and easily-implemented algorithm. For step (iii), we employ a greedy optimization
by traversing axis-aligned binary-split kd-trees (explained in Section 3). The contribution here is an
efficient algorithm called “informed splitting” for performing the necessary optimization in practice.

As we show in Section 4, CAD-MP computes much more accurate approximations than competing
approaches for a given computational budget.

2 Discretizing a factor graph

Let us consider what it means todiscretizean inference problem represented by a factor graph with
factorsfi and continuous variablesxα taking values in some subset ofR

N . One constructs a non-
uniform discretization of the factor graph by partitioningthe state space of each variablexα into
K regionsHk

α for k = 1, . . . ,K. This discretization induces a discrete approximationf ′
i of the

factors, which are now regarded as functions of discrete variablesx′
α taking integer values in the set

{1, 2, . . . ,K}:

f ′
i(k, l, . . .) =

∫
xα∈Hk

α,xβ∈Hl
β

,...

fi(xα, xβ , . . .), (1)

for k, l, . . . = 1, . . . ,K. A slight variant of BP [4] could then be used to infer the marginals onx′
α

according to the update equations for messagesm and beliefsb:

mα,i(k) =
∏

f ′

j
∼x′

α\f ′

i

mj,α(k) (2)

mi,α(k) =
1

|Hk
α|

∑
x
′|x′

α=k

f ′
i(x

′)
∏

x′

β
∼f ′

i
\x′

α

mβ,i(x
′
β) (3)

bα(k) = |Hk
α|

∏
f ′

j
∼x′

α

mi,α(k), (4)

wherea ∼ b\c means “all neighborsa of b exceptc”, x
′ is an assignment of values to all variables,

and|Hk
α| =

∫
Hk

α
1. Thus, given a factor graph of continuous variables and a particular choice of dis-

cretization{Hk
α}, one gets a piecewise-constant approximation to the marginals by first discretizing

the variables according to (1), then using BP according to (2)–(4). The error in the approximation
to the true marginals arises from (3) whenf ′

i(x) is not constant overx in the given partition.

Consider the task of selecting between discretizations of acontinuous probability distributionp(x)
over some subsetU of Euclidean space. Adiscretizationof p consists in partitioningU into K
disjoint subsetsV1, . . . , VK and assigning a weightwk to eachVk, with

∑
k wk = 1. The corre-

sponding discretized probability distributionq(x) assigns densitywk/|Vk| to Vk. We are interested
in finding a discretization for which the KL divergenceKL(p||q) is as small as possible. The opti-
mal choice of thewk for any fixed partitioningV1, . . . , VK is to takewk =

∫
x∈Vk

p(x) [14]; we call
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Figure 1: Expanding a hypercube in two dimensions. HypercubeH (b), a subset of the full
state space (a), is first “expanded” into the sub-cubes{H−−,H+−,H−+,H++} (c) by splitting
along each possible dimension. These sub-cubes are then re-combined to form two possible split
candidates{H1−,H1+} (d) and{H2−,H2+} (e). Informed belief values are computed for the
re-combined hypercubes, including a new estimate forb̂(H) (f), by summing the beliefs in the
finer-scale partitioning. The new estimates are more accurate since the error introduced by the
discretization decreases as the partitions become smaller.

these thenatural weights forp(x), given theVk. There is a simple relationship between the quality
of anaturally-weighteddiscretization and its entropyH(·):

Theorem 1. Among any collection of naturally-weighted discretizations ofp(x), the minimum KL
divergence top(x) is achieved by a discretization of minimal entropy.

Proof. For a naturally-weighted discretizationq, KL(p||q) = −
∑K

k=1
wk log wk

|Vk|
+

∫
U

p log p =

H(q) − H(p). H(p) is constant, soKL(p||q) is minimized by minimizingH(q). �

Suppose we are given a discretization{Hk
α} and have computed messages and beliefs for every

node using (2)–(4). The messages have not necessarily reached a fixed point, but we nevertheless
have some current estimate for them. For any arbitrary hypercubeH at xα (not necessarily in its
current discretization) we can define theinformed belief, denoted̂b(H), to be the beliefH would
receive if all other nodes and their incoming messages were left unaltered. To compute the informed
belief, one first computes new discrete factor function values involvingH using integrals like (1).
These values are fed into (2), (3) to produce “informed” messagesmi,α(H) arriving atxα from each
neighborfi. Finally, the informed messages are fed into (4) to obtain the informed belief̂b(H).

3 Continuously-adaptive discretization

The core of the CAD-MP algorithm is the procedure for passinga message to a variablexα. Given
fixed approximations at every other node, any discretization of α induces an approximate belief dis-
tribution qα(xα). The task of the algorithm is to select the best discretization, and as Theorem 1
shows, a good strategy for this selection is to look for a naturally-weighted discretization that min-
imizes the entropy ofqα. We achieve this using a new algorithm called “informed splitting” which
is described next.

CAD-MP employs an axis-aligned binary-split kd-tree [15] to represent the discrete partitioning of
a D-dimensional continuous state space at each variable (the same representation was used in [14]
where it was called a Binary Split Partitioning). For our purposes, a kd-tree is a binary tree in which
each vertex is assigned a subset—actually a hypercube—of the state space. The root is assigned the
whole space, and any internal vertex splits its hypercube equally between its two children using an
axis-aligned plane. The subsets assigned to all leaves partition the state space into hypercubes.

We build the kd-tree greedily by recursively splitting leafvertices: at each step we must choose
a hypercubeHk

α in the current partitioning to split, and a dimensiond to split it. According to
Theorem 1, we should choosek andd to minimize the entropy of the resulting discretization—
provided that this discretization has “natural” weights. In practice, the natural weights are estimated
using informed beliefs; we nevertheless proceed as though they were exact and choose thek- and
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d-values leading to lowest entropy. A subroutine of the algorithm involves “expanding” a hypercube
into sub-cubes as illustrated in the two-dimensional case in Figure 1. The expansion procedure
generalizes toD dimensions by first expanding to2D subcubes and then re-combining these into
2D candidate splits. Note that for alld ∈ {1, . . . ,D}

b̂(H) ≡ b̂(Hd−) + b̂(Hd−). (5)

Once we have expanded each hypercube in the current partitioning and thereby computed values for
b̂(Hk

α), b̂(Hk,d−
α ) andb̂(Hk,d+

α ) for all k andd, we choosek andd to minimize the “split entropy”

γα(k, d) = −
∑
i6=k

b̂(Hi
α) log

b̂(Hi
α)

|Hi
α|

− b̂(Hk,d−
α ) log

b̂(Hk,d−
α )

|Hk,d−
α |

− b̂(Hk,d+
α ) log

b̂(Hk,d+
α )

|Hk,d+
α |

. (6)

Note that from (5) we can perform this minimization without normalizing thêb(·).

We can now describe the CAD-MP algorithm using informed splitting, which re-partitions a vari-
able of the factor graph by producing a new kd-tree whose leaves are the hypercubes in the new
partitioning:

1. Initialize the root vertex of the kd-tree with its associated hypercube being the whole state
space, with belief 1. Add this root to a leaf setL and “expand” it as shown in Figure 1.

2. While the number of leaves|L| is less than the desired number of partitions in the dis-
cretized model:

(a) Pick the leafH and split dimensiond that minimize the split-entropy (6).
(b) Create two new verticesH− andH+ by splittingH along dimensiond, and “expand”

these new vertices.
(c) RemoveH fromL, and addH− andH+ toL.

All variables in the factor graph are initialized with the trivial discretization (a single partition). Vari-
ables can be visited according to any standard message-passing schedule, where a “visit” consists
of repartitioning according to the above algorithm. A simple example showing the evolution of the
belief at one variable is shown in Figure 2.

If the variable being repartitioned hasT neighbors and we require a partitioning ofK hypercubes,
then a straightforward implementation of this algorithm requires the computation of2K × 2D ×
KT message components. Roughly speaking, then, informed splitting pays a factor of2D+1 over
BP which must computeK2T message components. But CAD-MP trades this for an exponential
factor in K since it can home in on interesting areas of the state space using binary search, so if
BP requiresK partitions for a given level of accuracy, CAD-MP (empirically) achieves the same
accuracy with onlyO(log K) partitions. Note that in special cases, including some low-level vision
applications [16], classical BP can be performed inO(KT ) time and space; however this is still
prohibitive for largeK.

4 Experiments

We would like to compare our candidate algorithms against the marginal belief distributions that
would be computed by exact inference, however no exact inference algorithm is known for our
models. Instead, for each experiment we construct a fine-scale uniform discretizationDf of the
model and input data, and compute the marginal belief distributionsp(xα;Df ) at each variable
xα using the standard forward-backward BP algorithm. Given a candidate approximationC we
can then compare the marginalsp(xα; C) under that approximation to the fine-scale discretization
by computing the KL-divergenceKL(p(xα;Df )||p(xα; C)) at each variable. In results below, we
report the mean of this divergence across all variables in the graph, and refer to it in the text asµ(C).
While a “fine-enough” uniform discretization will tend to thetrue marginals, we do nota priori
know how fine that is. We therefore construct a sequence of coarser uniform discretizationsDi

c of
the same model and data, and computeµ(Di

c) for each of them. Ifµ(Di
c) is converging rapidly

enough to zero, as is the case in the experiments below, we have confidence that the fine-scale
discretization is a good approximation to the exact marginals.

4



Observation (local factor) (a) (b) (c)

Figure 2: Evolution of discretization at a single variable. The left image is the local (single-
variable) factor at the first node in a simple chain MRF whose nodes have 2-D state spaces. The
next three images, from left to right, show the evolution of the informed belief. Initially (a) the par-
titioning is informed simply by the local factor, but after messages have been passed once along the
chain and back (b), the posterior marginal estimate has shifted and the discretization has adapted ac-
cordingly. Subsequent iterations over the chain (c) do not substantially alter the estimated marginal
belief. For this toy example only 16 partitions are used, andthe normalized log of the belief is
displayed to make the structure of the distribution more apparent.

We compare our adaptive discretization algorithm against non-parametric belief propagation
(NBP) [9, 10] which represents the marginal distribution ata variable by a particle set. We generate
some importance samples directly from the observation distribution, both to initialize the algorithm
and to “re-seed” the particle set when it gets lost. Particlesets typically do not approximate the tails
of a distribution well, leading to zeros in the approximate marginals and divergences that tend to
infinity. We therefore regularize all divergence computations as follows:

KL∗(p||q) =
∑

k

p∗k log(
p∗k
q∗k

), p∗k =
ε +

∫
Hk p(x)∑

n(ε +
∫

Hn p(x))
, q∗k =

ε +
∫

xk
q(x)∑

n(ε +
∫

Hn q(x))
(7)

where{Hk} are the partitions in the fine-scale discretizationDf . All experiments useε = 10−4

which was found empirically to show good results for NBP.

We begin with a set of experiments over ten randomly generated input sequences of a one-
dimensional target moving through structured clutter of similar-looking distractors. One of the
sequences is shown in Figure 3a, where time goes from bottom to top. The measurement at a time-
step consists in 240 “pixels” (piecewise-constant regionsof uniform width) generated by simulating
a small one-dimensional target in clutter, with additive Gaussian shot-noise. There are stationary
clutter distractors, and also periodic “forkings” where a moving clutter distractor emerges from the
target and proceeds for a few time-steps before disappearing. Each sequence contains 256 time-
steps, and the “exact” marginals (Figure 3b) are computed using standard discrete BP with 15360
states per time-step. The modes of the marginals generated by all the experiments are similar to
those in Figure 3b, except for one run of NBP shown in Figure 3cthat failed entirely to find the
mode (red line) due to an unlucky random seed. However, the distributions differ in fine structure,
where CAD-MP approximates the tails of the distribution much better than NBP.

Figure 4a shows the divergencesµ(·) for the various discrete algorithms: both uniform discretization
at various degrees of coarseness, and adaptive discretization using CAD-MP with varying numbers
of partitions. Each data point shows the mean divergenceµ(·) for one of the ten simulated one-
dimensional datasets. As the number of adaptive partitionsincreases, the variance ofµ(·) across
trials increases, but the divergence stays small. Higher divergences in CAD-MP trials correspond
to a mis-estimation of the tails of the marginal belief at a few time-steps. The straight line on
the log/log plot for the uniform discretizations gives us confidence that the fine-scale discretization
is a close approximation to the exact beliefs. The adaptive discretization provides a very faithful
approximation to this “exact” distribution with vastly fewer partitions.

Figure 4b shows the divergences for the same ten one-dimensional trial sequences when the
marginals are computed using NBP with varying numbers of particles. The NBP algorithm was
run five times on each of the ten simulated one-dimensional datasets with different random seeds
each time, and the particle-set sizes were chosen to approximately match the computation time of
the CAD-MP algorithm. The NBP algorithm does worse absolutely (the divergences are much larger
even after regularization, indicating that areas of high belief are sometimes mis-estimated), and also
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(a): Observations (b): “Exact” beliefs (c): an NBP “failure”

(d) (e) (f) (g)
Exact beliefs (d) are represented more faithfully by CAD-MP(e), (f) than NBP (g)

Figure 3:One of the one-dimensional test sequences. The region of the white rectangle in (b) is
expanded in (d)–(g), with beliefs now plotted on log intensity scale to expand their dynamic range.
CAD-MP using only 16 partitions per time-step (e) already produces a faithful approximation to the
exact belief (d), and increasing to 128 partitions (f) fills in more details. The NBP algorithm using
800 particles (g) does not approximate the tails of the distribution well.
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Figure 4: Adaptive discretization achieves the same accuracy as uniform discretization using
many fewer partitions, but non-parametric belief propagation is less effective. See Section 4
for details.
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varies greatly across different trial sequences, and when re-run with different random seeds on the
same trial sequence. Note also that theµ(·) are bi-modal—values ofµ(·) above around 0.5 signify
runs on which NBP incorrectly located the mode of the marginal belief distribution at some or all
time-steps, as in Figure 3c.

We performed a similar set of experiments using a simulated two-dimensional data-set. This time
the input data is a64 × 64 image grid, and the “exact” fine-scale discretization is at aresolution
of 512 × 512 giving 262144 discrete states in total. Figures 4c and 4d show that adaptive dis-
cretization still greatly outperforms NBP for an equivalent computational cost. Again there is a
straight-line trend in the log/log plots for both CAD-MP anduniform discretization, though as in
the one-dimensional case the variance of the divergences increases with more partitions. NBP again
performs less accurately, and frequently fails to find the high-weight regions of the belief at all at
some time-steps, even with 3200 particles.

Adaptive discretization seems to correct some of the well-known limitations of particle-based meth-
ods. The discrete distribution is able to represent probability mass well into the tails of the distri-
bution, which leads to a more faithful approximation to the exact beliefs. This also prevents the
catastrophic failure case for NBP shown in Figure 3c, where the mode of the distribution is lost
entirely because no particles were placed nearby. Moreover, CAD-MP’s computational complexity
scales linearly with the number of incoming messages at a factor. NBP has to resort to heuristics to
sample from the product of incoming messages once the numberof messages is greater than two.

5 Related work

The work most closely related to CAD-MP is the 1997 algorithmof Kozlov and Koller [14]. We
refer to this algorithm as “KK97”; its main differences to CAD-MP are: (i) KK97 is described in a
junction tree setting and computes the marginal posterior of just the root node, whereas CAD-MP
computes beliefs everywhere in the graph; (ii) KK97 discretizesmessages(on junction tree edges)
rather thanvariables(in a factor graph), so multiplying incoming messages together requires the
substantial additional complexity of merging disparate discretizations, compared to CAD-MP in
which the incoming messages share the same discretization.Difference (i) is the more serious, since
it renders KK97 inapplicable to the type of early-vision problem we are motivated by, where the
marginal at every variable must be estimated.

Coarse-to-fine techniques can speed up the convergence of loopy BP [16] but this does not address
the discrete state-space explosion. One can also prune the state space based on local evidence [17,
18]. However, this approach is unsuitable when the data function has high entropy; moreover, it is
very difficult to bring a state back into the model once it has been pruned.

Another interesting approach is to retain the uniform discretization, but enforce sparsity on messages
to reduce computational cost. This was done in both [19] (in which messages are approximated us-
ing a using a mixture of delta functions, which in practice results in retaining theK largest message
components) and [20] (which uses an additional uniform distribution in the approximating distri-
bution to ensure non-zero weights for all states in the discretization). However, these approaches
appear to suffer when multiplying messages with disjoint peaks whose tails have been truncated to
enforce sparsity: such peaks are unable to fuse their evidence correctly. Also, [20] is not directly
applicable when the state-space is multi-dimensional.

Expectation Propagation [5] is a highly effective algorithm for inference in continuous-valued net-
works, but is not valid for densities that are multimodal mixtures.

6 Discussion

We have demonstrated that our new algorithm, CAD-MP, performs accurate approximate infer-
ence with complex, multi-modal observation distributionsand corresponding multi-modal posterior
distributions. It substantially outperforms the two standard methods for inference in this setting:
uniform-discretization and non-parametric belief propagation. While we only report results here on
simulated data, we have successfully used the method on low-level vision problems and are prepar-
ing a companion publication to describe these results. We believe CAD-MP and variants on it may
be applicable to other domains where complex distributionsmust be estimated in spaces of low to
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moderate dimension. The main challenge in applying the technique to an arbitrary factor graph is
the tractability of the definite integrals (1).

This paper describes a particular set of engineering choices motivated by our problem domain. We
use kd-trees to describe partitionings: other data structures could certainly be used. Also, we employ
a greedy heuristic to select a partitioning with low entropyrather than exhaustively computing a
minimimum entropy over some family of discretizations. We have experimented with a Metropolis
algorithm to augment this greedy search: a Metropolis move consists in “collapsing” some sub-tree
of the current partitioning and then re-expanding using a randomized form of the minimum-entropy
criterion. We have also tried tree-search heuristics that do not need theO(2D) “expansion” step,
and thus may be more effective whenD is large. The choices reported here seem to give the best
accuracy on our problems for a given computational budget, however many others are possible and
we hope this work will serve as a starting point for a renewed interest in adaptive discretization in a
variety of inference settings.

References
[1] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-

mann, 1988.

[2] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief networks is NP-hard.
Artificial Intelligence, 60(1):141–153, 1993.

[3] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J.Spiegelhalter.Probabilistic Net-
works and Expert Systems. Springer, 1999.

[4] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalizedbelief propagation. InNIPS, pages
689–695, 2000.

[5] T. Minka. Expectation propagation for approximate bayesian inference. InProc. UAI, pages 362–369,
2001.

[6] G. Kitagawa. The two-filter formula for smoothing and an implementationof the gaussian-sum smoother.
Ann. Inst. Statist. Math., 46(4):605–623, 1994.

[7] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief propagation for early vision. InProc. CVPR,
2004.

[8] M. Isard and J. MacCormick. Dense motion and disparity estimation vialoop belief propagation. In
ACCV, pages 32–41, 2006.

[9] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. Nonparametricbelief propagation. InProc. CVPR,
volume 1, pages 605–612, 2003.

[10] M. Isard. Pampas: Real-valued graphical models for computervision. In Proc. CVPR, volume 1, pages
613–620, 2003.

[11] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the sum-product algorithm.IEEE
Transactions on Information Theory, 47(2):498–519, 2001.

[12] O. Zoeter and H. Heskes. Deterministic approximate inference techniques for conditionally gaussian state
space models.Statistics and Computing, 16(3):279–292, 2006.

[13] T. Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft
Research, 2005.

[14] Alexander V. Kozlov and Daphne Koller. Nonuniform dynamic discretization in hybrid networks. In
Proc. UAI, pages 314–325, 1997.

[15] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.Commun. ACM,
18(9):509–517, 1975.

[16] P.F. Felzenszwalb and D.P. Huttenlocher. Pictorial structures for object recognition. Int. J. Computer
Vision, 61(1):55–79, 2005.

[17] J. Coughlan and S. Ferreira. Finding deformable shapes using loopy belief propagation. InProc. ECCV,
pages 453–468, 2002.

[18] J. Coughlan and H. Shen. Shape matching with belief propagation: Using dynamic quantization to ac-
commodate occlusion and clutter. InProc. Workshop on Generative-Model Based Vision, 2004.

[19] C. Pal, C. Sutton, and A. McCallum. Sparse forward-backward using minimum divergence beams for
fast training of conditional random fields. InInternational Conference on Acoustics, Speech, and Signal
Processing, 2006.

[20] J. Lasserre, A. Kannan, and J. Winn. Hybrid learning of large jigsaws. InProc. CVPR, 2007.

8


