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Abstract This paper investigates the problem of modeling
Internet images and associated text or tags for tasks such as
image-to-image search, tag-to-image search, and image-to-
tag search (image annotation). We start with canonical cor-
relation analysis (CCA), a popular and successful approach
for mapping visual and textual features to the same latent
space, and incorporate a third view capturing high-level im-
age semantics, represented either by a single category or
multiple non-mutually-exclusive concepts. We present two
ways to train the three-view embedding: supervised, with
the third view coming from ground-truth labels or search
keywords; and unsupervised, with semantic themes auto-
matically obtained by clustering the tags. To ensure high
accuracy for retrieval tasks while keeping the learning pro-
cess scalable, we combine multiple strong visual features
and use explicit nonlinear kernel mappings to efficiently ap-
proximate kernel CCA. To perform retrieval, we use a spe-
cially designed similarity function in the embedded space,
which substantially outperforms the Euclidean distance. The
resulting system produces compelling qualitative results and
outperforms a number of two-view baselines on retrieval
tasks on three large-scale Internet image datasets.
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Fig. 1 Retrieval scenarios considered in this paper. Top: Given a query
image, retrieve similar images from the database. Middle: Given a
search keyword or tag, retrieve relevant images. Bottom: Given a query
image, retrieve keywords or tags describing this image (automatic im-
age annotation).

1 Introduction

The goal of this work is modeling the statistics of images
and associated textual data in large-scale Internet photo col-
lections in order to enable a variety of retrieval scenarios:
similarity-based image search, keyword-based image search,
and automatic image annotation (Figure 1). Practical models
for these tasks must meet several requirements. First, they
must be accurate, which is a big challenge given that the im-
agery is extremely heterogeneous and user-provided annota-
tions are noisy. Second, they must be scalable to millions of
images. Third, they must be flexible, accommodating cross-
modal retrieval tasks such as tag-to-image or image-to-tag
search in the same framework, and enabling, for example,
tag-based search of images without any tags.
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Text: 1024 x 768 Au Revoir Trompette . All Things 
Chill » Blog Archive » Wallpapers  
Keywords: trumpet 

Text:  Arc de Triomphe and Champs Elysees.  
Arc de Triomphe If you are foolhardy enough to. 
Arc de Triomphe and Champs Elysees, Paris,  
France - intoFrance . 
Keywords: Arc de Triomphe 
  

 (a)  Flickr-CIFAR                 (b) NUS WIDE                  (c) INRIA web images  

Tags:  sunset, night, 
colors, pink, tower, 
shot, kuwait, stunning 
Keywords: buildings 
sky tower water 

 
Tags: keywest, 
Florida, tropics, 
fauna, deer, keywest, 
wedding… 
Keywords: deer 

 
Tags: yellow, frog, 
amphibian, canon, 
550d, eos, picture, 
image… 
Keywords: frog 

Tags: interestingness, 
window, mexico, 
balcony 
Keywords: window 

Number of images: 230,173       
Number of tags:  2494       
Number of keywords: 10                      

Number of images: 269,648 
Number of tags:  1000 
Number of keywords: 81           

Number of images: 71,478      
Number of tags:  20,602 
Number of keywords: 353                     

 
Tags: ladder, truck, 
sparten, quint, 
1500gpm… 
Keywords: truck 

Text: PSG-ASSE: les Notes - MoreFoot.com. Beckham  
amoureux du maillot blanc PSG ASSE les Notes.  
France Une fin de match haletante n aura pas  
 
Keywords: Paris Saint-Germain FC 
  

Tags: red, natural, 
landscape, sunset, 
evening, seascape, 
marsh 
Keywords: lake, plants, 
sunset 

Fig. 2 An overview of the Internet image datasets used in this paper. Each image has three views associated with it: the visual features; the text
or tags; and the semantics or ground-truth keywords. For Flickr-CIFAR dataset (collected by ourselves as described in Section 5) and INRIA-
Websearch dataset (Krapac et al., 2010), each image only has one ground-truth keyword. For the NUS-WIDE dataset (Chua et al., 2009), each
image has multiple keywords.

Several promising recent approaches for modeling im-
ages and associated text (Gong and Lazebnik, 2011; Hardoon
et al., 2004; Hwang and Grauman, 2010, 2011; Rasiwasia
et al., 2010) rely on canonical correlation analysis (CCA),
a classic technique that maps two views, given by visual and
and textual features, into a common latent space where the
correlation between the two views is maximized (Hotelling,
1936). This space is cross-modal, in the sense that embed-
ded vectors representing visual and textual information are
treated as the same class of citizens, and thus image-to-image,
text-to-image, and image-to-text retrieval tasks can in prin-
ciple all be handled in exactly the same way.

While CCA is very attractive in its simplicity and flex-
ibility, existing CCA-based approaches have several short-
comings. In particular, the works cited above use classic
two-view CCA, which only considers the direct correlations
between images and corresponding textual feature vectors.
However, as we will show in this paper, significant improve-
ments can be obtained by considering a third view with which
the first two are correlated – that of the underlying semantics
of the image.

In this work, we use the term “semantics” to refer to
high-level labels or topics that characterize the content of an
image for the sake of a given application. For concrete ex-
amples, consider Figure 2, which illustrates the three-view
datasets used in our experiments. In these datasets, the se-
mantic view of an image consists of one or more ground-
truth keywords. Even though our approach does not rely on a
probabilistic generative model, we can think of the other two
views, i.e., visual features and tags/text, as being stochasti-
cally generated based on the keywords. In particular, the tags

tend to come from a larger vocabulary than the keywords
and they tend to be noisier. As in Figure 2 (a), the seman-
tics of an image may be given by a single object category
(“deer”), while the user-provided tags may include a number
of additional terms correlated with that category (“keywest,
Florida, tropics, fauna, wedding” etc.). Alternatively, the se-
mantics might be given by multiple keywords correspond-
ing to objects, scene types, or attributes. Thus, as in Figure
2 (b), an image may be annotated by multiple ground-truth
keywords “buildings, sky, tower, water” and tags “sunset,
night, colors, pink, tower, shot, kuwait, stunning.” Or, as in
Figure 2 (c), the semantics may be given by the name of a
logo or landmark, and the text may be taken from the sur-
rounding webpage, and may or may not explicitly mention
the ground-truth keyword.

In this paper, we present a three-view CCA model that
explicitly incorporates the high-level semantic information
as a third view. The difference between the standard two-
view CCA and our proposed three-view embedding is visu-
alized in Figure 3. In the two-view embedding space (Fig-
ure 3 (a)), which is produced by maximizing the correlations
between visual features and the corresponding tag features,
images from different classes are very mixed. On the other
hand, the three-view embedding (Figure 3 (b)) provides a
much better separation between the classes. As our experi-
ments will confirm, a third semantic view – which may be
derived from a variety of sources – is capable of consid-
erably increasing the accuracy of retrieval on very diverse
datasets.

In all the examples of Figure 2, the ground-truth seman-
tic keywords are defined ahead of time and accurately an-
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Fig. 3 A visualization of the first two directions of the common latent space for (a) standard two-view CCA and (b) our proposed three-view
CCA model. Different colors indicate different image categories (though note that category information is not used in learning the three-view
embedding). Black points indicate sample tag queries, and the corresponding images are their nearest neighbors in the latent space.

notated for the express purpose of training recognition al-
gorithms. However, in most realistic situations, it is easy
to gather noisy text and tags, but not so easy to get at the
underlying semantics. Fortunately, we will show that even
in cases when clean ground-truth annotation for the third
view is unavailable, it is still possible to learn a better em-
bedding for the photo collection by representing the seman-
tics explicitly. In some cases, we can get an informative ad-
ditional signal from search keywords. For example, if we
retrieve a number of images together with their tags from
Flickr using a search for “frog,” then knowing the original
search keyword gives us additional modeling power even if
many of these images do not actually depict frogs. Further-
more, if ground truth category or search keyword informa-
tion is absent completely, we will demonstrate that an ef-
fective third view can be derived in an unsupervised way
by clustering the noisy tag vectors constituting the second
view. This approach is inspired by cluster-based informa-
tion retrieval (Wei et al., 2011) and the “cluster assumption”
in semi-supervised learning (Chapelle et al., 2003). In ef-
fect, the tag clustering can be thought of as “reconstructing”
or “recovering” the absent topics or distinct types of image
content.

To obtain high retrieval accuracy, most modern methods
have found it necessary to combine multiple high-dimensional
visual features, each of which may come with a different
similarity or kernel function. Retrieval approaches of Hwang
and Grauman (2010, 2011); Yakhnenko and Honavar (2009)
accomplish this combination using nonlinear kernel CCA
(KCCA) (Bach and Jordan, 2002; Hardoon et al., 2004),
but the standard KCCA formulation scales cubically in the
number of images in the dataset. Instead of KCCA, we use
a scalable approximation scheme based on efficient explicit
kernel mapping followed by linear dimensionality reduction

and linear CCA. Finally, we specifically design a similarity
function suitable for our learned latent embedding, and show
that it achieves significant improvement over the Euclidean
distance. Experiments on the three large-scale datasets of
Figure 2 show the promise of the proposed approach.

The following is a preview of the structure and main con-
tributions of this paper:

– A novel three-view CCA framework that explicitly in-
corporates the dependence of visual features and text on
the underlying image semantics (Section 3.1).

– A similarity function specially adapted to CCA that im-
proves the accuracy of retrieval in the embedded space
(Section 3.2).

– Scalable yet discriminative representations for the visual
and textual views based on multiple feature combina-
tion, explicit kernel mappings, and linear dimensionality
reduction (Sections 4.1 and 4.2).

– Two methods for instantiating the third semantic view:
supervised, or derived from ground-truth annotations by
unsupervised clustering; and unsupervised, or derived
by clustering the tag vectors from the second (textual)
view. In both cases, our experiments confirm that adding
the third view helps to improve retrieval accuracy. For
the unsupervised case, we perform a comparative eval-
uation of several tag clustering methods from the litera-
ture (Section 4.3).

– Extensive evaluation of the proposed three-view mod-
els on three tasks – image-to-image, tag-to-image, and
image-to-tag search. Section 5 will give an overview of
our experimental protocol, and Sections 6-8 will present
results on the three large-scale datasets introduced in
Figure 2.
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2 Related Work

In the vision and multimedia communities, jointly modeling
images and text has been an active research area. This sec-
tion gives a non-exhaustive survey of several important lines
of research related to our work.

Some of the earliest research on images and text (Barnard
and Forsyth, 2001; Blei and Jordan, 2003; Blei et al., 2003;
Duygulu et al., 2002; Lavrenko et al., 2003) has focused on
learning the co-occurrences between image regions and tags
using a generative model. Since most datasets used for train-
ing such models lack image annotation at the region level,
learning to associate tags with image regions is a very chal-
lenging problem, especially for contaminated Internet photo
collections with very large tag vocabularies. Moreover, im-
age tags frequently refer to global properties or characteris-
tics that cannot be easily localized. Therefore, we focus on
establishing relationships between whole images and words.

Conceptually, our three-view formulation may be com-
pared to the generative model that attempts to capture the
relationships between the image class, annotation tags, and
image features. One example of such a model in the liter-
ature is Wang et al. (2009a). Unlike Wang et al. (2009a),
though, we do not concern ourselves with the exact gener-
ative nature of the dependencies between the three views,
but simply assign symmetric roles to them and model the
pairwise correlations between them. Also, while Wang et al.
(2009a) tie annotation tags to image regions following Blei
and Jordan (2003); Blei et al. (2003), we treat both the image
appearance and all the tags assigned to the image as global
feature vectors. This allows for much more scalable learning
and inference (the approach of Wang et al. (2009a) is only
tested on datasets of under 2,000 images and eight classes
each).

The major goal of our work is learning a joint latent
space for images and tags, in which corresponding images
and tags are mapped to nearby locations, so that simple nearest-
neighbor methods can be used to perform cross-modal tasks,
including image-to-image, tag-to-image, and image-to-tag
search. A number of successful recent approaches to learn-
ing such an embedding rely on Canonical Correlation Anal-
ysis (CCA) (Hotelling, 1936). Hardoon et al. (2004) and
Rasiwasia et al. (2010) have applied CCA to map images
and text to the same space for cross-modal retrieval tasks.
Hwang and Grauman (2010, 2011) have presented a cross-
modal retrieval approach that models the relative importance
of words based on the order in which they appear in user-
provided annotations. Blaschko and Lampert (2008) have
used KCCA to develop a cross-view spectral clustering ap-
proach that can be applied to images and associated text.
CCA embeddings have also been used in other domains,
such as cross-language retrieval (Udupa and Khapra, 2010;
Vinokourov et al., 2002). Unlike all the other CCA-based

image retrieval and annotation approaches, ours adds a third
view that explicitly represents the latent image semantics.

Our approach also has connections to supervised multi-
view learning, in which images are characterized by visual
and textual views, both of which are linked to the underly-
ing semantic labels. The literature contains a number of so-
phisticated methods for multi-view learning, including gen-
eralizations of CCA/KCCA (Rai and Daumé, 2009; Sharma
et al., 2012; Yakhnenko and Honavar, 2009), metric learn-
ing (Quadrianto and Lampert, 2011) and large-margin for-
mulations (Chen et al., 2012). Fortunately, we have found
that our basic CCA formulation already gives very promis-
ing results without having to pay the price of increased com-
plexity for learning and inference.

Since learning a projection for the data is equivalent to
learning a Mahalanobis metric in the original feature space,
our work is related to metric learning (Globerson et al.,
2005; Goldberg et al., 2004; Weinberger et al., 2005). For
example, the large-margin nearest neighbor (LMNN) approach
(Weinberger et al., 2005) learns a distance metric that is op-
timized for nearest neighbor classification, and neighbor-
hood component analysis (NCA) (Goldberg et al., 2004)
optimizes leave-one-out loss for nearest neighbor classifi-
cation. Metric learning has been used for image classifica-
tion and annotation (Guillaumin et al., 2009; Mensink et al.,
2012; Verma and Jawahar, 2012). However, all of these ap-
proaches learn an embedding or a metric for visual features
only, so they cannot be used to perform cross-modal re-
trieval.

The two main tasks we use for evaluating our system are
image-to-image search, which has been traditionally studied
as content-based image retrieval (Datta et al., 2008; Smeul-
ders et al., 2000), and tag-to-image search, or image retrieval
using text-based queries (Grangier and Bengio, 2008; Kra-
pac et al., 2010; Liu et al., 2009; Lucchi and Weston, 2012).
A task related to tag-to-image search, though one we do
not consider directly, is re-ranking of contaminated image
search results for the purpose of dataset collection (Berg and
Forsyth, 2006; Fan et al., 2010; Frankel et al., 1997; Schroff
et al., 2007).

The third task we are interested in evaluating is image-
to-tag search or automatic image annotation (Carneiro et al.,
2007; Li and Wang, 2008; Monay and Gatica-Perez, 2004).
This task has traditionally been addressed with the help of
sophisticated generative models such as Blei and Jordan (2003);
Carneiro et al. (2007); Lavrenko et al. (2003). More recently,
a number of publications have reported better results with
simple data-driven schemes based on retrieving database im-
ages similar to a query and transferring the annotations from
those images (Chua et al., 2009; Guillaumin et al., 2009;
Makadia et al., 2008; Verma and Jawahar, 2012; Wang et al.,
2008). We will adopt this strategy in our experiments and
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demonstrate that retrieving similar images in our embedded
latent space can improve the accuracy of tag transfer.

The data-driven image annotation approaches of Guil-
laumin et al. (2009); Makadia et al. (2008); Verma and Jawa-
har (2012) use discriminative learning to obtain a metric or
a weighting of different features to improve the relevance
of database images retrieved for a query. Unfortunately, the
learning stage is very computationally expensive – for ex-
ample, in the TagProp method of Guillaumin et al. (2009),
it scales quadratically with the number of images. In fact,
the standard datasets used for image annotation by Makadia
et al. (2008); Guillaumin et al. (2009); Verma and Jawa-
har (2012) consist of 5K-20K images and have 260-290 tags
each.By contrast, our datasets (shown in Figure 2) range in
size from 71K to 270K and have tag vocabularies of size 1K-
20K. While it is possible to develop scalable metric learning
algorithms using stochastic gradient descent (e.g., Mensink
et al. (2012)), our work shows that learning a linear embed-
ding using CCA can serve as a simpler attractive alternative.

Perhaps the largest-scale image annotation system in the
literature is the Wsabie (Web Scale Annotation by Image
Embedding) system by Weston et al. (2011). It uses stochas-
tic gradient descent to optimize a ranking objective function
and is evaluated on datasets with ten million training exam-
ples. Like our approach, Wsabie learns a common embed-
ding for visual and tag features. Unlike ours, however, it has
only a two-view model and thus does not explicitly represent
the distinction between the tags used to describe the image
and the underlying image content. Also, Wsabie is not ex-
plicitly designed for multi-label annotation, and evaluated
on datasets whose images come with single labels (or single
paths in a label hierarchy).

One of the shortcomings of data-driven annotation ap-
proaches (Guillaumin et al., 2009; Makadia et al., 2008;
Verma and Jawahar, 2012) as well as Wsabie is that they not
account for co-occurrence and mutual exclusion constraints
between different tags for the same image. If the retrieved
nearest neighbors of an image belong to incompatible se-
mantic categories (e.g., “bird” and “plane”), then the tags
transferred from them to the query may be incoherent as
well (see Figure 13 (a) for an example). To better exploit
constraints between multiple tags, it is possible to treat im-
age annotation as a multi-label classification problem (Chen
et al., 2011; Zhu et al., 2005). In the present work, we limit
ourselves to learning the joint visual-textual embedding. It
would be interesting to impose multi-label prediction con-
straints in the joint latent space – in fact, Zhang and Schnei-
der (2011) have recently proposed an approach combining
CCA with multi-label decoding – but doing so is outside the
scope of our paper.

Finally, our work has connections to approaches that use
Internet images and accompanying text as auxiliary training
data to improve performance on tasks such as image clas-

sification, for which cleanly labeled training data may be
scarce (Guillaumin et al., 2010; Quattoni et al., 2007; Wang
et al., 2009b). In particular, Quattoni et al. (2007) use the
multi-task learning framework of Ando and Zhang (2005)
to learn a discriminative latent space from Web images and
associated captions. We will use this embedding method as
one of our baselines, though, unlike our approach, it can
only be applied to images, not to tag vectors. Apart from
multi-task learning, another popular way to obtain an inter-
mediate embedding space for images is by mapping them to
outputs of a bank of concept or attribute classifiers (Rasiwa-
sia and Vasconcelos, 2007; Wang et al., 2009c). Once again,
unlike our method, this produces an embedding for images
only; also, training of a large number of concept classifiers
tends to require more supervision and be more computation-
ally intensive than training of a CCA model.

3 Modeling Images, Tags, and High-Level Semantics

3.1 Scalable three-view CCA formulation

In this section, we introduce a three-view kernel CCA for-
mulation for learning a joint space for visual, textual, and se-
mantic information. Then we show how to obtain a scalable
approximation using explicit kernel embeddings and linear
CCA.

We assume we have n training images each of which is
associated with a v-dimensional visual feature vector and a
t-dimensional tag feature vector (our specific feature repre-
sentations for both views will be discussed in Section 4).
The respective vectors are stacked as rows in matrices V ∈
Rn×v and T ∈ Rn×t. In addition, each training image is also
associated with semantic class or topic information, which
is encoded in a matrix C ∈ Rn×c, where c is the number
of classes or topics. Each image may be labeled with ex-
actly one of the c classes (in which case only one entry in
each row of C is 1 and the rest are 0); alternatively, each
image may be described by several of the c keywords (in
which case, multiple entries in each row ofC may be 1). An-
other possibility is that C is a soft indication matrix, where
the i, jth entry indicates the degree (or posterior probability)
with which image i belongs to the jth class or topic. In the
supervised learning scenario, C is obtained from (possibly
noisy) annotations that come with the training data. In the
unsupervised scenario (where only images and tags are ini-
tially given), C is “latent” and must be obtained by cluster-
ing the tags, as will be discussed in Section 4.3. To simplify
the notation in the following, we will also use X1, X2, X3

to denote V, T,C respectively.
Let x,y denote two points from the ith view. The sim-

ilarity between these points is defined by a kernel function
Ki such that Ki(x,y) = ϕi(x)ϕi(y)

>, where ϕi(·) is a
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(a) Two-view model.

 

(b) Three-view model.

Fig. 4 (a) Traditional two-view CCA minimizes the distance (equiva-
lently, maximizes the correlation) between images (triangles) and their
corresponding tags (circles). (b) Our proposed approach is to incorpo-
rate semantic classes or topics (black squares) as a third view. Images
and tags belonging to the same semantic cluster are forced to be close
to each other, imposing additional high-level structure. See also Figure
3 for a visualization of two embeddings on real data.

function embedding the original feature vector into a nonlin-
ear kernel space. Practical kernel-based learning schemes do
not work in the embedded space directly, relying on the ker-
nel function instead. However, we will formulate KCCA as
solving for a linear projection from the kernel space, because
this leads directly to our scalable approximation scheme based
on explicit embeddings.

In KCCA, we want to find matrices Wi that project the
embedded vectors ϕi(x) from each view into a low-dimen-
sional common space such that the distances in the resulting
space between each pair of views for the same data item
are minimized. The objective function for this formulation
is given by

min
W1,W2,W3

3∑
i,j=1

‖ϕi(Xi)Wi − ϕj(Xj)Wj‖2F (1)

subject to W>i ΣiiWi = I, w>ikΣijwjl = 0,

i, j = 1, . . . , 3, i 6= j , k, l = 1, . . . , d, k 6= l,

whereΣij is the covariance matrix betweenϕ(Xi) andϕ(Xj),
and wik is the kth column of Wi (the number of columns in
each Wi is equal to the dimensionality of the resulting com-
mon space). To better understand this objective function, let
us consider its three terms:

min
W1,W2,W3

‖ϕ1(V )W1 − ϕ2(T )W2‖2F+

‖ϕ1(V )W1 − ϕ3(C)W3‖2F + ‖ϕ2(T )W2 − ϕ3(C)W3‖2F .

The first term tries to align corresponding images and tags,
and it is the sole term in the standard two-view CCA objec-
tive (Hardoon et al., 2004). The remaining two terms, which
are introduced in our three-view model, try to align images
(resp. tags) with their semantic topic. Figure 4 illustrates
the difference between the two- and three-view formulations
graphically.

In the standard KCCA formulation, instead of directly
solving for linear projections of data explicitly mapped into
the kernel space by ϕi, one applies the “kernel trick” and

expresses the coordinates of a data point in the CCA space as
linear combinations of kernel values of that point and several
training points. To find the weights in this combination, one
must solve a 3n × 3n generalized eigenvalue problem (see
Bach and Jordan (2002); Hardoon et al. (2004) for details),
which is infeasible for large-scale data.

To handle large numbers of images and high-dimensional
features, we propose a scalable approach based on the idea
of approximate kernel maps (Maji and Berg, 2009; Perronnin
et al., 2010; Rahimi and Recht, 2007; Vedaldi and Zisser-
man, 2010). Let ϕ̂(x) denote an approximate kernel map-
ping such that Ki(x,x

′) ' ϕ̂i(x)ϕ̂i(x
′)>. The dimension-

ality of ϕ̂(x) needs to be much lower than n to reduce the
complexity of the problem. The specific kernel mappings
used in our implementation will be described in Section 4.1.
Then, instead of using the kernel trick, we can directly sub-
stitute ϕ̂(x) into the linear CCA objective function (1). The
solution is given by the following generalized eigenvalue
problem:

S11 S12 S13

S21 S22 S23

S31 S32 S33

w1

w2

w3

 = λ

S11 0 0

0 S22 0

0 0 S33

w1

w2

w3

 ,

where Sij = ϕ̂i(Xi)
>ϕ̂j(Xj) is the covariance matrix be-

tween the ith and jth views, and wi is a column of Wi. The
size of this problem is (d1 + d2 + d3) × (d1 + d2 + d3),
where the di are the dimensionalities of the respective ex-
plicit mappings ϕ̂i(·). This is independent of training set
size, and much smaller than 3n×3n. To regularize the prob-
lem, we add a small constant (10−4 in the experiments) to
the diagonal of the covariance matrix.

In order to obtain a d-dimensional embedding for differ-
ent views, we form projection matrices Wi ∈ Rdi×d from
the top d eigenvectors corresponding to each wi. Then the
projection of a data point x from the ith view into the la-
tent CCA space is given by ϕ̂i(x)Wi. Note that once they
are learned, the respective projection matrices are applied to
each view individually, which means that at test time, we
can compute the embedding for data for which one or two
views are missing (e.g., an image without tags or ground-
truth semantic labels). In the latent CCA space, points from
different views are directly comparable, so we can do image-
to-image, image-to-tag, and tag-to-image retrieval by near-
est neighbor search.

In the implementation, we select the embedding dimen-
sionality d by measuring the retrieval accuracy in embedded
spaces with different values of d on validation images set
aside from each of our datasets (details will be given in Sec-
tions 6-8). We search a range from 16 to 1,024, doubling the
dimensionality each time, and the resulting values typically
fall around 128-256 on all our datasets.
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3.2 Similarity function in the latent space

In the CCA-projected latent space, the function used to mea-
sure the similarity between data points is important. An ob-
vious choice is the Euclidean distance between embedded
data points, as used in Foster et al. (2010); Hwang and Grau-
man (2010); Rasiwasia et al. (2010). However, for our learned
embedding, we were able to find a similarity function that
produces better empirical results. In particular, we scale the
dimensions in the common latent space by the magnitude of
the corresponding eigenvalues (Chapelle et al., 2003), and
then compute normalized correlation between projected vec-
tors. Indeed, the CCA objective can be reformulated as max-
imizing the normalized correlation between different views
(Hardoon et al., 2004).

Let x and y be points from the ith and jth views, respec-
tively (we can have i = j). Then we define the similarity
function between x and y as

sim(x,y) =
(ϕ̂i(x)WiDi)(ϕ̂j(y)WjDj)

>

‖ϕ̂i(x)WiDi‖2‖ϕ̂j(y)WjDj‖2
, (2)

where Wi and Wj are the CCA projections for data points x
and y, and Di and Dj are diagonal matrices whose diago-
nal elements are given by the p-th power of the correspond-
ing eigenvalues (Chapelle et al., 2003). We fix p = 4 in all
our experiments as we have found this leads to the best per-
formance. Section 6.4 will experimentally confirm that the
above similarity measure leads to much higher retrieval ac-
curacy than Euclidean distance.

4 Representations of the Three Views

In Sections 4.1 and 4.2, we will present our visual and text
features with their respective kernel mappings. Next, in Sec-
tion 4.3, we will discuss different text clustering approaches
that can be used to extract semantic topics in the unsuper-
vised scenario, where the third view is not given for the
training data.

4.1 Visual feature representation

We represent image appearance using a combination of nine
different visual cues:

GIST (Oliva and Torralba, 2001): We resize each image to
200×200 and use three different scales [8, 8, 4] to filter each
RGB channel, resulting in 960-dimensional (320× 3) GIST
feature vectors.

SIFT: We extract six different texture features based on two
different patch sampling schemes: dense sampling and Har-
ris corner detection. For each local patch, we extract SIFT
(Lowe, 2004), CSIFT (van de Sande et al., 2010), and RG-
BSIFT (van de Sande et al., 2010). For each feature, we

form a codebook of size 1,000 using k-means clustering and
build a two-level spatial pyramid (Lazebnik et al., 2006), re-
sulting in a 5000-dimensional vector. We will refer to these
six features as D-SIFT, D-CSIFT, D-RGBSIFT, H-SIFT, H-
CSIFT, and H-RGBSIFT.

HOG (Dalal and Triggs, 2005): To represent texture and
edge information on a larger scale, we use 2 × 2 overlap-
ping HOG as described in Xiao et al. (2010). We quantize
the HOG features to a codebook of size 1,000 and use the
same spatial pyramid scheme as above, once again resulting
in 5,000-dimensional feature vectors.

Color: We use a joint RGB color histogram of 8 bins per
dimension, for a 512-dimensional feature.

Recall from Section 3.1 that we transform all the fea-
tures by nonlinear kernel maps ϕ̂(x) and then apply linear
CCA to the result. We discuss the specific feature maps we
use here. For GIST features, we use the random Fourier fea-
ture mapping (Rahimi and Recht, 2007) that approximates
the Gaussian kernel. We compute this mapping with 3,000
dimensions and set its standard deviation equal to the av-
erage distance to the 50th nearest neighbor in each dataset.
All the other descriptors above are histograms, and for them
we adopt the exact Bhattacharyya kernel mapping given by
term-wise square root (Perronnin et al., 2010). To combine
different features, we simply average the respective kernels,
which has been proven to be quite effective in Gehler and
Nowozin (2009). This corresponds to concatenating all the
different visual features after putting them through their re-
spective explicit kernel mappings. However, the resulting
concatenated feature has 38,512 dimensions, necessitating
additional dimensionality reduction. To do this, we perform
PCA on top of each kernel-mapped feature ϕ̂i(·). This is es-
sentially using the low-rank approximation of kernel PCA
(KPCA) (Scholkopf et al., 1997) to approximate the com-
bined multiple feature kernel matrix.

In our experiments, we reduce each kernel-mapped fea-
ture to 500 dimensions and the final concatenated feature is
a 4, 500-dimensional vector. As validated in Section 6.2, this
dimensionality achieves good balance between efficiency and
accuracy. Note that for multiple feature combination, we
have found it important to center all feature dimensions at
the origin.

4.2 Tag feature representation

For the tags associated with the images, we construct a dic-
tionary consisting of t most frequent tags (the vocabulary
sizes used for the different datasets are summarized in Fig-
ure 2 and will be further detailed in Section 5) and manu-
ally remove a small set of stop words. These include cam-
era brands (e.g., “canon,” “nikon,” etc.), lens characteristics
(e.g., “eos,” “70-200mm,” etc.), and words like “geo.” The
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tag feature matrix T is binary: Tij = 1 if image i is tagged
with tag j and 0 otherwise. Note that even though the dimen-
sionality of the tag feature may be high (our vocabularies
range from 1,000 to over 20,000 on the different datasets),
this representation is highly sparse.

Like Guillaumin et al. (2010), we use the linear kernel
for T , which corresponds to counting the number of com-
mon tags between two images. However, because of the high
dimensionality of the tag features, additional compression is
required, just as with the concatenated visual features. We
apply sparse SVD (Larsen, 1998) to the tag feature T to ob-
tain a low-rank decomposition as T = U1SU

>
2 . It is easy

to show that U1S is actually the PCA embedding for T , but
directly applying sparse SVD to T is more efficient. In our
implementation, the compressed representation of T is given
by the top 500 columns of U1S.

We have also investigated more sophisticated tag fea-
tures such as the ranking-based representation of Hwang and
Grauman (2010), which is based on the idea that tags listed
earlier by users are more salient to the image content. How-
ever, we have found almost no improvement from our cho-
sen representation.

4.3 Semantic view representation

As initially discussed in Section 3, the third view of our
CCA model is given by the class or topic indicator matrix
C ∈ Rn×c for n images and c topics. In the supervised
training scenario, C is straightforwardly given by ground-
truth annotations or noisy search keywords used to down-
load the data. In the more interesting unsupervised scenario,
training images come with noisy text or tags, but no addi-
tional semantic annotations. In this case, we choose to ob-
tain C by clustering the tags. Given the raw tag feature T
(prior to the application of sparse SVD), our goal is to find
c semantic clusters. For this purpose, we investigate several
models that have proven successful for text clustering. We
briefly describe these models below; quantitative and quali-
tative evaluation results will be presented in Section 6.3.

K-means clustering: The simplest baseline approach is k-
means clustering on raw tag feature T using c centers. The
resulting matrix C has a 1 in the i, jth position if the ith tag
feature vector belongs to the jth cluster.

Normalized cut (NC) (Ng et al., 2001; Shi and Malik, 2000):
For text clustering, the normalized cut model is usually for-
mulated as computing the eigenvectors of

L = I −D−1/2TT>D−1/2 ,

in whichD = diag(T (T>1)). This is equivalent to comput-
ing the first c singular vectors of the sparse matrix D−1/2T .
Following Ng et al. (2001), we normalize each row of the
matrix of top c eigenvectors to have unit norm and perform

k-means clustering of rows of the resulting matrix Ũ . Di-
rectly using Ũ as C would represent a “soft” version of NC,
but we have found that the “hard” version obtained by k-
means produces better results.

Nonnegative matrix factorization (NMF) (Xu et al., 2003):
The data matrix is normalized as D−1/2T , where D is de-
fined the same way as for NC, and then factorized into two
nonnegative matrices U and V such that T = U>V (if T
is n × t, then U is c × n and V is c × t). Then, as in Xu
et al. (2003), we obtain a normalized matrix Ũ with entries
Uij/

√∑
j V

2
ij . Finally, we do hard cluster assignment based

on the highest value of Ũ in each row. Just as with NC, this
produces better results than using Ũ as a “soft” cluster indi-
cator matrix directly.

Probabilistic latent semantic analysis (pLSA) (Hofmann,
1999): This approach models each document (vector of tags
for an image) as a mixture of topics. The output of pLSA
is the posterior probability of each topic given each docu-
ment. Directly using this matrix of posterior probabilities
as C leads to “soft” pLSA clustering. However, once again,
we get better performance with “hard” pLSA where we map
each document to the cluster index with the highest posterior
probability. We have also investigated latent Dirichlet allo-
cation (LDA) (Blei et al., 2003) and found the performance
to be similar to pLSA, so we omit it.

Because the number of topics used in this work is not
very high (from 10 to 100), we simply use a linear kernel on
C with no further dimensionality reduction.

5 Overview of Experimental Evaluation

This section will present the components of our experimen-
tal evaluation, including datasets, retrieval tasks, multi-view
models being compared, and baselines. Subsequently, Sec-
tions 6-8 will present results on our three datasets.

5.1 Datasets

Our selection of datasets is motivated by two considerations.
First, we want datasets that are as large as possible, both in
the number of images and in the number of tags. Second,
we want datasets that have the right kind of annotations for
evaluating our method – specifically, images that are accom-
panied both by noisy text or tags, and ground-truth labels.

We have considered a number of datasets used in re-
cent related papers, but unfortunately, most of them are un-
suitable for our goals. In particular, standard image anno-
tation datasets used by Makadia et al. (2008); Guillaumin
et al. (2009); Rasiwasia and Vasconcelos (2007); Verma and
Jawahar (2012) – namely, Corel5K (Duygulu et al., 2002),
ESP Game (von Ahn and Dabbish, 2004), and IAPR-TC
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(Grubinger et al., 2006) – have only two views and are rather
small-scale (5K-20K images and 260-290 tags). Rasiwasia
et al. (2010), who have first proposed a two-view CCA model
for cross-modal retrieval of Internet images, perform exper-
iments on a Wikipedia dataset that has rich textual views
as well as ground-truth labels, but it consists of only 2,866
documents. Weston et al. (2011) evaluate their Wsabie an-
notation system on millions of images. However, one of their
datasets is drawn from ImageNet (Deng et al., 2009), which
is more appropriate for image classification, and the other
one is proprietary; neither has the three-view structure we
are looking for.

The three datasets we have chosen are shown in Figure
2. The first one is collected by ourselves, while the other two
are publicly available.

Flickr-CIFAR dataset: We have downloaded 230,173 im-
ages from Flickr by running queries for categories from the
CIFAR10 dataset (Krizhevsky, 2009): airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. We keep tags
that appear at least 150 times, resulting in a tag dictionary
with dimensionality 2,494. On average, there are 6.84 tags
per image. The Flickr images come with search keywords
and user-provided tags, but no ground-truth labels. To quan-
titatively evaluate retrieval performance we need another set
of cleanly labeled test images. We get this set by collecting
the same ten categories from ImageNet (Deng et al., 2009),
resulting in 15,167 test images with no tags but ground-truth
class labels.

NUS-WIDE dataset: This dataset (Chua et al., 2009) was
collected at the National University of Singapore. It also
originates from Flickr, and contains 269,648 images. The
dataset is manually annotated with 81 ground truth concept
labels, e.g., animal, snow, dog, reflection, city, storm, fog,
etc. One important difference between NUS-WIDE and other
datasets is that NUS-wide images may be associated with
multiple ground truth labels. For the tags, we use the list
of 1,000 words provided by Chua et al. (2009); on average,
each image has 5.78 tags and 1.86 ground truth annotations.
Each ground truth concept is also in the tag dictionary.

INRIA-Websearch dataset: Finally, we use the INRIA Web
query dataset (Krapac et al., 2010), which contains 71,478
web images and 353 different concepts or categories, which
include famous landmarks, actors, films, logos, etc. Each
concept comes with a number of images retrieved via In-
ternet search, and each image is marked as either relevant
or irrelevant to its query concept. This dataset is especially
challenging in that it contains a very large number of con-
cepts relative to the total number of images. The second
view for this dataset consists of text surrounding images on
web pages, not tags. We keep words that appear more than
20 times and remove stop words using a standard list for
text document analysis, which gives us a tag dictionary of

size 20,602. On this dataset, we also apply tf-idf weighting
to the tag feature.

The above three datasets have different characteristics
and present different challenges for our method. Flickr-CIFAR
has the fewest classes but the largest number of images per
class. It is also the only dataset whose training images have
no ground-truth semantic annotation, and whose test images
come from a different distribution than the training images.
We use this dataset for detailed comparative validation of
the different implementation choices of our method (Sec-
tion 6). NUS-WIDE images are fully manually annotated
and come with multiple ground truth concepts per image.
INRIA-Websearch is the only one not collected from Flickr,
and its images are the most inconsistent in quality. It has the
largest number of classes but the smallest number of images
per class. It also has by far the largest vocabulary for the
second view and the noisiest statistics for this view.

5.2 Retrieval tasks

For evaluation, we consider the following tasks.

Image-to-image search (I2I): Given a query image, project
its visual feature vector into the CCA space, and use it to
retrieve the most similar visual features from the database.
Recall that our similarity function in the CCA space is given
by eq. (2).

Tag-to-image search (T2I): Given a search tag or combina-
tion of tags, project the corresponding feature vector into the
CCA space and retrieve the most similar database images.
This is a cross-modal task, in that the CCA-embedded tag
query is used to directly search CCA-embedded visual fea-
tures. Note that with our method, we can use tags to search
database images that do not initially come with any tags. In
scenarios where ground-truth labels or keywords are avail-
able for the database images, we also consider a variant of
this task where we use the keywords as queries, which we
refer to as keyword-to-image search (K2I).
Image-to-tag search (I2T): Given an image, retrieve a set
of tags that accurately describe it. This task is more chal-
lenging than the other two because going from a feature
vector in CCA space to a coherent set of tags requires a so-
phisticated reconstruction or decoding algorithm (see, e.g.,
Hsu et al. (2009); Zhang and Schneider (2011)). The de-
sign of such an algorithm is beyond the scope of our present
work, but to get a preliminary idea of the promise of our la-
tent space representation for this task, we evaluate a simple
data-driven scheme similar to that of Makadia et al. (2008).
Namely, given a query image, we first find the fifty near-
est neighbor tag vectors in CCA space, and then return the
five tags with the highest frequencies in the corresponding
database images. Note that Makadia et al. (2008) return tags
according to their global frequencies, while for our larger
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and more diverse datasets, we have found that local fre-
quency works better. Because our method for I2T is some-
what preliminary and because proper evaluation of this task
requires human annotators (see Section 6.7), our experiments
on this task will be smaller-scale and more limited than on
the other two.

The precise evaluation protocols and performance met-
rics used for each task are dataset-specific, and will be de-
scribed in Sections 6-8.

5.3 Multi-view models

In the subsequent presentation, we will denote visual fea-
tures as V, tag features as T, the keyword or ground truth an-
notations as K, and the automatically computed topics as C.
CCA (V+T) will refer to the two-view baseline model based
on visual and tag features; CCA (V+T+K) to the three-view
model based on visual features, tags, and supervised seman-
tic information (ground truth labels or search keywords);
and CCA (V+T+C) to the three-view model with the un-
supervised third view (automatically computed tag clusters).
All of these models will be evaluated for both I2I and T2I re-
trieval. For completeness, we will also evaluate the two-view
CCA (V+C) and CCA (V+K)1 models for I2I retrieval. How-
ever, because these models do not give an embedding for
the tags, they cannot be used for cross-modal retrieval (i.e.,
T2I). In addition, we will evaluate K2I and I2T on subsets
of models as appropriate (see Sections 6-8 for details).

5.4 Baselines

It is important to evaluate how CCA compares to alternative
methods for obtaining intermediate embeddings for visual
features supervised by tag or keyword information. For this,
we have implemented two embedding methods from the re-
cent literature, as described below.

Structural learning. Our first baseline is given by the struc-
tural or multi-task learning method of Ando and Zhang (2005);
Quattoni et al. (2007). In their formulation, the tag matrix T
is treated as supervisory information for the visual features
V and a matrix of image-to-tag predictors W is obtained by
ridge regression: ‖T − VW‖2 + ρ‖W‖2. Next, since the
tasks of predicting multiple tags are assumed to be corre-
lated, we look for low-rank structure in W by computing its
SVD. If W = U1SU

>
2 , then we use U1 (or more precisely,

its top d columns) as the embedding matrix for the visual
features: E = V U1. We select d by validation just as with
our CCA-based methods. Note that the structural learning
method does not produce an embedding for tags, so unlike

1 It can be shown that CCA with labels as one of the views is equiv-
alent to Linear Discriminant Analysis (LDA) (Bartlett, 1938).

CCA (V+T) and our three-view models, it is not suitable for
cross-modal retrieval.

Wsabie. As a second baseline, we use Wsabie (Weston et al.,
2011). This method learns a discriminative model of the
form f(x) = xUW where U is the embedding and W is
the matrix of weights for a set of classifiers, which in our
case correspond to keywords (the K view). Once we obtain
the embedding matrix U for the visual features, we evaluate
the accuracy of I2I in the embedded space. Note that Wsa-
bie, just as the structural learning method described above,
cannot be used for cross-modal retrieval.

We have implemented Wsabie as described in Weston
et al. (2011), using stochastic gradient descent (SGD) to op-
timize a ranking-based loss function. We use random initial-
ization and a fixed learning rate of 0.01. The only difference
from Weston et al. (2011) is that instead of explicit regular-
ization, we use early stopping as suggested in Gordo et al.
(2012). Namely, we run the SGD training for 20n iterations,
where n is the number of training points, and validate the
performance on the I2I task after processing every 1,000
points. At the end, the parameters with the highest valida-
tion accuracy are picked. For the dimensionality of the em-
bedding U , we use a value of 128, which is relatively effi-
cient and achieves good performance (it is also comparable
to the typical dimensionalities that get selected by valida-
tion for our CCA model). Overall, the training of Wsabie
is slower and more complicated than our approach, as it in-
volves learning rate tuning and validation for early stopping.
By contrast, the only parameter in our approach is the regu-
larization constant in the covariance matrix (see Section 3.1)
and it is set to a fixed value in all our experiments.

6 In-depth Analysis on Flickr-CIFAR

In this section, we use the Flickr-CIFAR dataset to conduct
a detailed study of the various components of our proposed
multi-view models, including feature combination and com-
pression, different methods for tag clustering, and the pro-
posed similarity function. For this purpose, we use the I2I,
T2I, and K2I tasks. At the end, in Section 6.7 we perform a
smaller-scale evaluation of I2T or image tagging.

6.1 Experimental protocol

Remember from Section 5 that the Flickr-CIFAR dataset
consists of 230,173 Flickr images that are used to learn the
CCA embedding and 15,167 ImageNet images that are used
for quantitative evaluation. The ImageNet images are split
into 13,167 “database” images against which retrieval is per-
formed, 1,000 validation images, and 1,000 test images. One
fixed split is used for all experiments. The validation images
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D-SIFT D-CSIFT D-RGBSIFT H-SIFT H-CSIFT H-RGBSIFT HOG GIST RGB Hist. All
Image-to-image search

No PCA 42.51 42.58 41.54 43.57 41.27 43.02 43.13 40.48 24.32 –
PCA (500D) 42.03 42.01 40.86 42.51 40.98 42.21 42.41 39.96 24.38 54.90

Tag-to-image search
No PCA 53.68 50.34 52.02 55.67 52.18 54.84 54.06 48.75 26.88 –

PCA (500D) 55.24 53.71 53.83 58.42 54.18 57.29 56.12 51.41 28.52 64.07

Table 1 Precision@50 for full-dimensional vs. PCA-reduced data for image-to-image (top) and tag-to-image (bottom) retrieval for CCA (V+T).
We did not obtain the result for combined features without PCA due to excessive computational cost (see text).

are run as queries against the database in order to select the
dimensionality d of the embedding.

For I2I search, we use the test images as queries and re-
port precision at top p retrieved images (Precision@p) – that
is, the fraction of the p returned images having the same Im-
ageNet label as the query. For T2I search, we need a differ-
ent set of queries as the ImageNet images are not tagged. For
this, we take the tag feature vectors of 1,000 randomly cho-
sen Flickr images (which are excluded from the set used to
learn the embedding). The ground truth label of each query
is given by the search keyword used to download the cor-
responding image. We have manually examined 50 of these
queries and found that about 75% percent of the tags are
closely related to the ground-truth keyword – for example,
for the “car” keyword, the tags contain “car,” “cars,” and
most of the other tags are also loosely related to the ground-
truth keyword (“auto”). Thus, we expect this evaluation scheme
to be reasonably accurate. Just as for image-to-image search,
the evaluation metric for tag-to-image search is Precision@p.

6.2 Evaluation of features and training set size

Recall from Section 4.1 that we apply nonlinear kernel maps
to nine different visual features, reduce each of them to 500
PCA dimensions, and concatenate them together. As for the
tag features (Section 4.2), we use sparse SVD to compress
them to 500 dimensions. In this section, we evaluate these
transformations. Since no dimensionality reduction is involved
in the third view (K or C), for simplicity, we perform the
evaluation with the standard two-view CCA (V+T) model.

Table 1 reports the effect of PCA on image-to-image
and tag-to-image search for individual and combined visual
features. For image-to-image retrieval, applying PCA to the
original feature vectors may slightly hurt performance, but
the decrease is less than 1%. More importantly, combined
features significantly outperform each individual feature. On
the other hand, for tag-to-image retrieval, PCA consistently
helps to improve performance. This is possibly because Flickr
tags are noisy, and reducing the dimensionality smooths the
data.

To motivate our use of dimensionality reduction, it is in-
structive to give some running times on our platform, a 4-
core Xeon 3.33GHz workstation with 48GB RAM. For a
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Fig. 5 Performance with increasing number of training images on the
Flickr-CIFAR dataset.

single feature, it takes 2.5 seconds to obtain the CCA solu-
tion for approximated data (500 V + 500 T dimensions), ver-
sus 20 minutes for the full-dimensional kernel-mapped data
(5,000 V + 2,494 T). For all nine combined visual features,
it took around five minutes to get the approximated solution
(4,500 V + 500 T); because the computation scales cubi-
cally with the number of dimensions, we have not tried to
obtain the full-dimensional solution for all features (38,512
V + 2,494 T). Likewise, while one would ideally want to
compare our results to an exact KCCA solution using ker-
nel matrices, for hundreds of thousands of training points
this is completely infeasible on our platform (for n training
points, exact two-view KCCA involves solving a 2n × 2n

eigenvalue problem).

We conclude that combining multiple visual cues is in-
deed necessary to get the highest absolute levels of accuracy,
and that dimensionality reduction of kernel-mapped features
can satisfactorily address memory and computational issues
with negligible loss of accuracy.

Finally, Figure 5 reports the retrieval accuracy of the
two-view CCA (V+T) as a function of training dataset size.
We can see that a fairly large amount of data, above 100K,
is needed to converge to good performance.
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Image-to-image search Tag-to-image search
# clusters 10 20 30 40 50 100 10 20 30 40 50 100

visual k-means 49.12 48.73 48.73 48.52 48.50 47.58 57.35 56.67 56.47 56.07 56.16 56.20
k-means 51.60 56.18 57.36 57.45 57.34 57.40 63.23 65.23 67.36 66.76 68.29 70.29

NC 54.86 62.33 61.90 61.21 60.65 56.65 63.75 76.05 74.90 72.58 72.45 67.71
NMF 54.01 55.45 57.51 56.63 55.98 53.07 64.44 66.58 67.03 67.41 66.33 62.54
pLSA 55.40 56.43 57.33 57.62 56.89 54.88 62.45 64.71 64.92 65.76 67.32 66.83

Table 2 Precision@50 for different clustering methods for image-to-image and tag-to-image retrieval with the CCA (V+T+C) model. The second
row shows results for visual clusters and the remaining rows for semantic (tag-based) clusters. The results are averaged over five different random
initializations of the clustering methods. The performance of the CCA (V+T) baseline is 54.90% for image-to-image search, and 64.02% for
tag-to-image search.

6.3 Comparison of tag clustering methods

In Section 4.3, we have presented a number of tag cluster-
ing methods that can be used to obtain the semantic topic
matrix C for the third view when the training images do
not come with ground-truth semantic information. Table 2
compares the performance of these methods. We use our
proposed CCA (V+T+C) model, where V and T are low-
dimensional approximations to the visual and tag features as
discussed in Sections 4.1 and 4.2, and C is generated by the
different clustering methods being compared. As a baseline,
we also include results for k-means clustering based solely
on visual features. It is clear that visual clusters have worse
performance than all of the tag-based clustering methods,
thus confirming that the visual features are too ambiguous
for unsupervised extraction of high-level structure (this will
also be demonstrated qualitatively in Figure 8). In fact, the
performance of the three-view CCA (V+T+C) model with
visual clusters is even worse than that of the CCA (V+T)
baseline.

Among the tag-based clustering methods, normalized cut
(NC) method achieves the best performance across a wide
range of cluster sizes, followed by NMF, k-means and pLSA
in decreasing order of accuracy. Thus, NC will be our method
of choice for computing the CCA (V+T+C) embedding. As
a function of the number of clusters, accuracy tends to in-
crease up to a certain point, after which overfitting sets in.
The best number of clusters to use depends on the breadth of
coverage and the semantic structure of the dataset; we select
it using validation data.

Figure 6 visualizes a few tag clusters in the joint CCA
space for the NUS-WIDE dataset. For each example cluster,
it shows the most frequent tags associated with the images in
that cluster, as well as the sixteen images closest to the cen-
ter of the cluster in the CCA (V+T+C) space. We can see that
the clusters have a good degree of both visual and semantic
coherence. For comparison, Figure 7 shows some clusters in
just the tag view, i.e., before the joint CCA projection. We
can see the images in each cluster correspond to the same
semantic concept, though they are not visually similar. Fi-

method I2I T2I
CCA (V+T) (Eucl) 45.69 51.32
CCA (V+T) (scale+Eucl) 48.60 54.43
CCA (V+T) (scale+corr) 54.90 64.07
CCA (V+T+C) (Eucl) 53.61 69.69
CCA (V+T+C) (scale+Eucl) 57.06 72.42
CCA (V+T+C) (scale+corr) 62.44 75.92
CCA (V+T+K) (Eucl) 52.41 71.47
CCA (V+T+K) (scale+Eucl) 57.47 75.23
CCA (V+T+K) (scale+corr) 62.56 78.88

Table 3 Evaluation of different components of our proposed similar-
ity function (eq. 2) on three multi-view setups. “Eucl” denotes Eu-
clidean distance, “scale” denotes scaling of the feature dimensions by
the CCA eigenvalues, and “corr” denotes normalized correlation. CCA
(V+T+C) is computed using 20 NC clusters and CCA (V+T+K) is the
supervised three-view model with K given by search keywords of the
Flickr images.

nally, for completeness, Figure 8 shows k-means clusters on
just the visual features. Because our visual features are rela-
tively powerful, the cluster images are still perceptually sim-
ilar, but they are no longer semantically consistent (in par-
ticular, note the poor correspondence between the most fre-
quent tags for the entire clusters and the top sixteen images
in the clusters). Figure 8 confirms the difficulty of finding
good semantic themes by visual clustering alone, and helps
to explain why visual clusters decrease the retrieval perfor-
mance when incorporated as a third view in the learned CCA
model (Table 2).

6.4 Comparison of similarity functions

Section 3.2 has presented our similarity function for near-
est neighbor retrieval in the CCA space. Table 3 compares
this function (eq. 2) to plain Euclidean distance for three
different multi-view setups. We separately evaluate the ef-
fects of its two main components: eigenvalue scaling and
normalized correlation. From the table, we can find that both
these components give signficant improvements over the Eu-
clidean distance. We have consistently observed similar pat-
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cute rabbit bunny animal
baby adorable pet

funny   animals

cheerleader football girls
basketball girls dance

university sports college
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Fig. 6 Example semantic clusters on the NUS-WIDE dataset. For each cluster, we show the most frequent tags and the images closest to the cluster
center in the CCA (V+T+C) space.

tern on other datasets, so we adopt the proposed similarity
function in all subsequent experiments.

6.5 Comparison of multi-view models

Table 4 evaluates the performance of several multi-view mod-
els on three tasks: image-to-image (I2I), tag-to-image (T2I),
and keyword-to-image (K2I) retrieval. As explained in Sec-
tion 6.1, our performance metric for all tasks is class label
(keyword) precision at top 50 images.

The most naive baselines for our approach are given by
the single-view representations consisting only of visual fea-
tures – either raw 38,512-dimensional ones (V-full) or PCA-
compressed 4,500-dimensional ones (V). Both of these rep-

resentations can only be used directly for image-to-image
similarity search (I2I). As can be seen from Table 4, the
PCA-compressed feature gets higher precision for this task,
but in absolute terms, both perform poorly.

A stronger baseline for our three-view models is given
by the two-view CCA (V+T) representation, which can be
used for all three retrieval tasks we are interested in (it can
be used for K2I because the ten class labels or keywords in
this dataset are a subset of the tag vocabulary). For I2I, the
CCA (V+T) embedding improves the precision over non-
embedded image features (V) from 41.65% to 54.9%. Thus,
projecting visual features into a space that maximizes cor-
relation with Flickr tags greatly improves the semantic co-
herence of similarity-based image matches (i.e., in the CCA
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Fig. 7 Example tag clusters produced by k-means clustering on top of normalized cuts (Section 4.3). For each cluster center, the sixteen images
with the closest tag vectors are shown. The most frequent tags in the cluster are shown above the central cluster images.
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Fig. 8 Example visual k-means clusters for the NUS-WIDE dataset.

method I2I T2I K2I
V-full 33.68 – –
V 41.65 – –
CCA (V+T) 54.90 64.07 95.60
CCA (V+K) 61.77 – 92.60
CCA (V+T+K) 62.56 78.88 97.20
CCA (V+C) 61.69 – –
CCA (V+T+C) 62.44 75.92 97.80
Structural learning 57.77 – –
Wsabie 57.15 – –

Table 4 Results on Flickr-CIFAR for image-to-image (I2I), tag-to-
image (T2I), and keyword-to-image(K2I) retrieval. The protocols for
I2I and T2I are described in Section 6.1. For K2I, each of the 10
ground truth classes is used as a query once. The evaluation metric
is average precision (%) at top 50 retrieved images. V-full refers to
the concatenated 38,512-dimensional visual features. In all the other
approaches, V refers to the 4,500-dimensional PCA-reduced features,
T to the 500-dimensional sparse SVD-reduced tag features, and C is
computed based on 20 NC clusters. Structural learning refers to the
method of Ando and Zhang (2005); Quattoni et al. (2007) and Wsabie
refers to the method of Weston et al. (2011). We have obtained stan-
dard deviations from five random database/query splits, and they are
around 0.25% - 1%.

space, “truck” query images are much more likely to have
top matches that are also “truck” images).

Next, we consider our supervised three-view model, CCA
(V+T+K), where the third view is given by the search key-
words used to retrieve the Flickr images. Even though this
supervisory information is noisy (not all images retrieved
by Flickr search for “truck” will actually contain trucks), we
can see that incorporating it as a third view improves the
precision of all three of our target retrieval tasks. The unsu-
pervised version of our three-view model, CCA (V+T+C),
where the third view is given by 20 NC clusters, performs
almost identically to CCA (V+T+K) on I2I and K2I, and
has slightly lower precision for T2I. This is a very encour-
aging result, since it shows that semantic information that is
automatically recovered from noisy tags still provides a very
powerful form of supervision.

Table 4 also lists the performance of two-view models
CCA (V+K) and CCA (V+C) given by replacing the lower-
level tag-based view T by the higher-level but lower-dimensional
semantic view (K or C). Compared to CCA (V+T), both
models have significantly higher I2I precision (though it is
a bit lower than that of the respective three-view models).
Thus, replacing noisy tags with the cleaner semantic views
can help to improve performance. However, the two-view
V+K and V+C models are not suitable for tag-to-image search,
while the three-view models can be used for all the tasks we
care about.
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Fig. 9 Image-to-image retrieval results for two sample queries. The leftmost image is the query. Red border indicates a false positive.

(a) yellow (b) red (c) sail (d) ocean

Fig. 10 Examples of tag-based image search on the Flickr-CIFAR dataset.

The last two lines of Table 4 report baseline compar-
isons to structural learning (Ando and Zhang, 2005; Quat-
toni et al., 2007) and Wsabie (Weston et al., 2011). Both
perform better than CCA (V+T) but worse than all our other
multi-view CCA models. One reason for this is because these
models were designed for discrimination, not retrieval. In
the case of Wsabie, it is possible that a batch learning ap-
proach (for example, second-order batch optimization) can
give better performance than first-order SGD. However, a
batch implementation of Wsabie is beyond the scope of our
baseline comparisons (as described in the original paper,
Wsabie is a sampling method specifically designed for SGD).
Furthermore, neither structural learning nor Wsabie produces
an embedding for tags, so unlike CCA (V+T) and our three-
view models, these baselines are not suitable for tag-to-image
retrieval.

6.6 Qualitative results

Figure 9 shows image-to-image search results for two exam-
ple queries, and Figures 10 and 11 show examples of tag-to-

image search results. As noted earlier, one advantage of our
system over traditional tag-based search approaches is that
once our multi-view embedding is learned, we can use it to
perform tag-to-image search on databases of images with-
out any accompanying text. In fact, for the Flickr-CIFAR
dataset, recall that we are using an embedding trained on
tagged Flickr images to embed and search ImageNet images
that lack tags. Figure 10 shows top retrieved images for four
tags that do not correspond to the main ten keywords that
were used to download the dataset. In particular, we are able
to learn colors, common background classes like “ocean,”
and sub-classes of the main keywords like “sail.”

Figure 11 shows images retrieved for more complex queries
consisting of multiple tags such as “deer, snow.” Note that
“deer” is one of our ten main keywords, and “snow” is a
much less common tag. To get good retrieval results in such
cases, we have found that we need to give higher weights
to the more minor concepts when forming the query tag
vector. Intuitively, the tag projection matrix found by min-
imizing the CCA objective function (eq. 1) is much more
influenced by the distortion due to the common tags rather
than the rare ones. We have empirically observed that we
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(a) deer (b) deer, snow×2 (c) deer, snow×6 (d) snow

(e) ship (f) ship, sunset×2 (g) ship, sunset×6 (h) sunset

Fig. 11 Examples of tag-to-image search on Flickr-CIFAR with multiple query tags and adjustable weights (see text).
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Fig. 12 Tagging results on the Flickr-CIFAR dataset: Average preci-
sion of retrieved tags vs. tag rank based on manual evaluation (see
text).

can counteract this effect and obtain more accurate results
for less frequent tags by increasing their weights in the tag
vector at query time. To date, we have not designed a way
to tune the weights automatically. However, in an interac-
tive image search system, it would be very natural for users
to adjust the weights on the fly to modulate the importance
of different concepts in their query. For example, in Figure
11 (a)-(c), when we increase the weight for “snow,” snow
becomes more and more prominent in the retrieved images.

6.7 Tagging results

This section presents a quantitative evaluation of our method
for image tagging or annotation. As described in Section 5,
we use the data-driven annotation scheme of Makadia et al.

(2008), where tags are transferred from top fifty neighbors to
the query in the latent space. We randomly sample 200 query
images from our ImageNet test set and use CCA (V+T),
CCA (V+T+C), and CCA (V+T+K) spaces to transfer tags.
To evaluate the results, we ask four individuals (members
of the research group not directly involved with this project)
to verify the tags suggested by different methods, that is,
mark each tag as either relevant or irrelevant to the image.
To avoid bias, our evaluation interface does not tell the eval-
uators which set of tags was produced by which method, and
presents the sets of tags corresponding to different methods
in random order for each test image. Our reasons for using
human evaluation are twofold: first, our test images do not
have any ground truth annotations; second, it is hard to pro-
vide ground truth consisting of a complete set of tags that
could be relevant to an image. We combine the results of the
human evaluators by voting: each tag that gets marked as
relevant by three or more evaluators is considered correct.

Figure 12 reports average precision as a function of tag
rank (which is determined by frequency of the tag in the top
fifty closest images to the query in the CCA space). We can
find that our proposed three-view models, CCA (V+T+K)
and CCA (V+T+C), lead to better accuracy than the baseline
CCA (V+T) method. Figure 13 shows the tagging results
for CCA (V+T) vs. CCA (V+T+C) on a few example test
images.
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Fig. 13 Example image tagging results on Flickr-CIFAR dataset for CCA (V+T) and CCA (V+T+C). Tags in red have been marked as irrelevant
by human annotators.

7 Results on the NUS-WIDE Dataset

In this section, we compare different multi-view embeddings
on the NUS-WIDE dataset. We randomly split the dataset
into 219,648 training and 50,000 test images. As before, we
learn the joint embedding using the training images, and test
retrieval accuracy on testing dataset. In the test set, we ran-
domly sample and fix 1,000 images as the queries, 1,000
images as the validation set, and retrieve the remaining im-
ages. The validation set is used to find the number of clus-
ters for NC. For this dataset, this number ends up being 100,
vs. 20 for Flickr-CIFAR. The larger number of clusters for
NUS-WIDE is not surprising, since this dataset has a much
larger number of underlying semantic concepts than Flickr-
CIFAR (81 vs. ten). Since there are relatively fewer images
per class, we report Precision@20 instead of Precision@50.
Also, since the images in this dataset may contain multiple
ground truth keywords, we compute average per-keyword
precision. That is, if q is the number of keywords for a given
query image and a is the number of relevant keywords re-
trieved in the top p images, we define Precision@p as a

pq .

Table 5 reports results for different multi-view models
on I2I, T2I, and K2I search. For the supervised K view, we
directly use the ground truth annotations (which may con-
tain multiple nonzero entries per image). On this dataset,
the best performance is achieved by the supervised CCA
(V+T+K) and CCA (V+K) models. The unsupervised three-
view model CCA (V+T+C) still improves over CCA (V+T)
for all three tasks, but not as much as CCA (V+T+K). By
contrast, on the Flickr-CIFAR dataset (Table 4), we found
that CCA (V+T+C) and CCA (V+T+K) were very close to-
gether. The weaker performance of the unsupervised three-

method I2I T2I K2I
V-full 25.25 – –
V 32.23 – –
CCA (V+T) 42.44 42.37 60.87
CCA (V+K) 48.53 – 74.39
CCA (V+T+K) 48.06 50.46 68.25
CCA (V+C) 41.72 – –
CCA (V+T+C) 44.03 43.11 64.02
Structural learning 41.21 – –
Wsabie 43.65 – –

Table 5 Comparison of multi-view models and baselines on the NUS-
WIDE dataset. For K2I, since images may have multiple ground truth
keywords, we do not generate the keyword queries directly but use the
keyword vectors of the 1,000 query images used for I2I. The perfor-
mance metric is Precision@20 averaged over the number of keywords
per query, as described in the text. Structural learning refers to the
method of Ando and Zhang (2005); Quattoni et al. (2007) and Wsabie
refers to the method of Weston et al. (2011). We have obtained stan-
dard deviations from five random database/query splits, and they are
around 0.66% - 1.06%.

view model on NUS-WIDE is not entirely surprising, how-
ever, since the tag clusters for NUS-WIDE are likely much
more mixed than for Flickr-CIFAR, whose concepts were
fewer and better separated. Intuitively, for richer and more
diverse datasets, ground truth annotations are likely to be the
strongest source of semantic information. Also, unlike in Ta-
ble 4, the two-view supervised model CCA (V+K) appears
to have stronger results than the three-view CCA (V+T+K)
for I2I and especially K2I. This may be due to the T view
adding noise to the K view. Despite this, the two-view CCA
(V+K) model is not as useful or flexible as the three-view
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Fig. 14 Image-to-image retrieval results on the NUS-WIDE dataset. The query image is shown on the left, together with its ground truth concepts.
Red borders indicate false positive retrieval results. We consider an image to be a false positive if its ground truth annotation does not share any
concepts with the query. Please note, however, that the ground truth is noisy, so some false (resp. true) positives are labeled inaccurately.

CCA (V+T+K) one – in particular, the former is not suitable
for T2I retrieval.

Figure 14 shows example image-to-image search results
and Figure 15 shows example tag-to-image search results for
the CCA (V+T+C) model. As can be seen from the latter fig-
ure, our system can return appropriate images for compound
queries consisting of combinations of as many as three tags,
e.g., “mountain, river, waterfalls” or “beach, people, red.”
Figure 16 compares tag-to-image retrieval results for the
two-view model, CCA (V+T), and the three-view one, CCA
(V+T+C). The three-view model tends to retrieve more rel-
evant images, especially for compound queries.

Figure 17 compares image annotation results for CCA
(V+T), CCA (V+T+C), and CCA (V+T+K) using the same
human evaluation protocol as in Section 6.7. Unlike the Flickr-
CIFAR results in Figure 12, where the three-view models
produced higher precision than CCA (V+T), all three mod-
els work comparably for image tagging on NUS-WIDE. The
example results shown in Figure 18 confirm that the sub-
jective quality of the tags produced by two- and three-view
models is similar. We believe that the explanation for this
result has to do, at least in part, with the statistics of images
and tags in NUS-WIDE. Specifically, many images in this
dataset are either abstract or are natural landscape scenes

with no distinctive objects. For such images, all our em-
beddings tend to suggest generic tags. Also, suggesting tags
such as “landscape,” “night,” “light,” etc., appears to be some-
what easier than trying to suggest object-specific tags, which
are much more important for Flickr-CIFAR – indeed, in terms
of absolute performance, the precision curves for NUS-WIDE
(Figure 18) are higher than for Flickr-CIFAR (Figure 12).
Furthermore, as discussed in Section 5, our embedding does
not provide a complete solution to the image annotation prob-
lem, as it does not include a decoding step exploiting multi-
label constraints. Developing such a solution is an important
subject for our future work.

8 Results on the INRIA-Websearch Dataset

Finally, we report results on the INRIA web search dataset.
As explained in Section 5, ground-truth semantic informa-
tion for each image in this dataset is in the form of a bi-
nary label saying whether or not that image is relevant to
a particular query concept. This information directly gives
us our third view for the supervised CCA (V+T+K) model.
Since this dataset, just as NUS-WIDE, has relatively few
images per concept, we evaluate performance using Preci-
sion@20. We randomly split the dataset into 51,478 training
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(a) mountain river grass (b) mountain river tree (c) mountain river sky (d) mountain river waterfalls

(e) mountain river (f) river (g) reflection city river (h) reflection city

(i) city (j) night city (k) city fog (l) fog

(m) cloud (n) golden cloud (o) storm (p) storm beach

(q) beach (r) beach people (s) beach people red (t) red

Fig. 15 Examples of tag-to-image search on the NUS-WIDE dataset with CCA (V+T+C). Tags in italic are also part of the 81-member semantic
concept vocabulary. Notice that the three-view model can return appropriate images for combinations of up to three query tags.
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Fig. 16 A qualitative comparison of tag-to-image search for CCA (V+T) and CCA (V+T+C) on the NUS-WIDE dataset. Qualitatively, CCA
(V+T+C) works better. For “city, fog,” the three-view model successfully finds city images with fog, while CCA (V+T) only finds city images.
For “mountain, river, grass,” almost all images found by the three-view model contain some river, while the images found by CCA (V+T) do not
contain river.

and 20,000 test images. In the test set, we use 18,000 im-
ages as the database, 1,000 images as validation queries, and
1,000 as test queries. Note that the database includes images
marked as “irrelevant,” but not the validation or test queries.
For CCA (V+T+C), we tune the number of NC clusters on
the validation dataset to obtain 450 clusters.

Table 6 reports image-to-image and tag-to-image search
results. As this dataset is extremely noisy and diverse, the
absolute accuracy for all the methods is low. Precision may
be further lowered by the fact that each database image is
annotated with its relevance to just a single query concept
– thus, if a retrieved image is relevant for more than one
query, this may not show up in the quantitative evaluation.
Nevertheless, CCA (V+T+C) still consistently works bet-
ter than the CCA (V+T) baseline. As on the NUS-WIDE
dataset, the supervised CCA (V+T+K) model works better
than CCA (V+T+C). Also, as on NUS-WIDE, CCA (V+K)
works slightly better than CCA (V+T+K) for I2I. Once again,
this may be because the tag view (T) is adding noise to
the embedding. Figure 19 shows some qualitative image-to-
image search results.

Finally, since the second view of this dataset consists not
of tags, but of text mined from webpages, we do not evaluate
image-to-tag search.

9 Discussion and Future Work

This paper has presented a multi-view embedding approach
for Internet images, tags, and their semantics. We have started
with the two-view visual-textual CCA model popular in sev-
eral recent works (Gong and Lazebnik, 2011; Hardoon et al.,
2004; Hwang and Grauman, 2010, 2011; Rasiwasia et al.,
2010) and shown that its performance can be significantly
improved by adding a third view based on semantic ground
truth labels, image search keywords, or even topics obtained
by unsupervised tag clustering. In terms of quantitative re-
sults, this is our most significant finding – both the super-
vised and unsupervised three-view models, CCA (V+T+K)
and CCA (V+T+C), have consistently outperformed the two-
view CCA (V+T) model on all three datasets, despite the
extremely diverse characteristics shown by these datasets.

For the unsupervised three-view model, CCA (V+T+C),
it may appear somewhat unintuitive that the third cluster-
based view, which is completely derived from the second
textual one, can add any useful information to improve the
embedding. There are several ways to understand what the
unsupervised third view is doing. Especially in simpler datasets
with a few well-separated concepts, such as our Flickr-CIFAR
dataset, tag clustering is actually capable of “recovering”
the underlying class labels. Even in more diverse and am-
biguous datasets with overlapping concepts, tag clustering
can still find sensible concepts that impose useful high-level



A Multi-View Embedding Space for Modeling Internet Images, Tags, and their Semantics 21

 

image CCA (V+T) CCA (V+T+C) image CCA (V+T) CCA (V+T+C) 

(a)

 

orange 

dog 

girls 

costume 

sport 

party 

cheerleader 

girls 

costume 

game 

(b)

 

wall 

door 

yellow 

red 

orange 

red 

wall 

door 

handmade 

art 

(c)

 

architecture 

church 

spain 

building 

abandoned 

abandoned 

architecture 

military 

building 

decay 

(d)

 

night 

lights 

skyline 

sunset 

water 

sunset 

night 

lights 

skyline 

city 

(e)

 

storm 

weather 

clouds 

sky 

night 

blue 

clouds 

sky 

night 

storm 

(f)

 

black 

white 

portrait 

woman 

hands 

 

portrait 

black 

white 

woman 

girl 

(g)

 

snow 

white 

skiing 

winter 

blue 

snow 

winter 

blue 

white 

sky 

(h)

 

illustration 

art 

handmade 

drawing 

vintage 

art 

illustration 

handmade 

drawing 

design 

Fig. 17 Example tagging results on the NUS-WIDE dataset (see text for discussion).
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Fig. 18 Tagging results on the NUS-WIDE dataset: average precision
of retrieved tags vs. tag rank.

structure (Figure 6). In its attempt to discover this structure,
our embedding space may be likened to a non-generative
version of a model that connects visual features and noisy
tags to latent image-level semantics (Wang et al., 2009a).
From another point of view, we can observe that the out-
put of the clustering process, given by the cluster indicator
matrix C, is a highly nonlinear transformation of the second
view T that either regularizes the embedding or improves its
expressive power.

The quantitative and qualitative results presented in this
paper demonstrate that our proposed multi-view embedding
space, together with the similarity function specially designed
for it, successfully captures visual and semantic consistency

method I2I T2I K2I
V-full 5.42 – –
V 7.29 – –
CCA (V+T) 12.66 25.67 –
CCA (V+K) 16.84 – 44.43
CCA (V+T+K) 15.36 32.76 41.75
CCA (V+C) 13.25 – –
CCA (V+T+C) 13.61 29.57 –
Structural learning 8.35 – –
Wsabie 10.01 – –

Table 6 Precision@20 for different multi-view models on the INRIA-
Websearch dataset. For K2I, the queries correspond to the 353 ground
truth concepts. Note that these concepts are no longer necessarily part
of the tag vocabulary, so we cannot report K2I results for any embed-
ding that does not include the K view. We have obtained standard de-
viations from five random database/query splits, and they are around
0.6% - 1.1%.

in diverse, large-scale datasets. This space can form a good
basis for a scalable and flexible retrieval system capable of
simultaneously accommodating multiple usage scenarios. The
visual and semantic clusters discovered by tag clustering and
subsequent CCA projection can be used to summarize and
browse the content of Internet photo collections (Berg and
Berg, 2009; Raguram and Lazebnik, 2008). Figure 6 has
shown an example of what such a summary could look like.
Furthermore, users can search with images for similar im-
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Fig. 19 Sample image-to-image retrieval results on the INRIA-Websearch dataset. The query is on the left. Red border means false positive.

ages, or retrieve images based on queries consisting of mul-
tiple tags or keywords. As illustrated in Figure 11, they can
also manually adjust weights corresponding to different key-
words according to the importance of those keywords. Fi-
nally, our embedding space can also serve as a basis for an
automatic image annotation system. However, as discussed
in Section 7, in order to achieve satisfactory results on this
task, we need to develop more sophisticated decoding meth-
ods incorporating multi-label consistency constraints.

Besides the application scenarios named above, we are
also interested in using our learned latent space as an inter-
mediate representation for recognition tasks. One of these
is nonparametric image parsing (Liu et al., 2010; Tighe and
Lazebnik, 2010) where, given a query image, a small num-
ber of similar training images is retrieved and labels are
transferred from these images to the query. With a better
embedding for images and tags, this retrieval step may be
able to return training images more consistent with the query
and lead to improved accuracy for image parsing. Another
problem of interest to us is describing images with sentences
(Farhadi et al., 2010; Kulkarni et al., 2011; Ordonez et al.,
2011). Once again, with a good intermediate embedding space
linking images and tags, the subsequent step of sentence
generation may become easier.
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