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Abstract

Many large-scale (cloud) computations operate on
append-only, partitioned datasets. We present two incre-
mental computation frameworks to reuse prior work in
these circumstances: (1) reusing identical computations
already performed on data partitions, and (2) computing
just on the newly appended data and merging the new and
previous results.

1 Introduction

One of the most successful applications of cloud com-
puting is the analysis very large data sets. Batch pro-
cessing platforms such as Google’s Map-Reduce [3] and
Sawzall [16], Yahoo’s Hadoop [18] and Pig Latin [15],
and Microsoft’s Dryad [11], DryadLINQ [19] and
Scope [2] have been developed for this purpose. Many,
if not most, of the computation cycles expended by these
engines are currently employed for analyzing logs, such
as search engine logs. The analysis of very large scien-
tific data sets (e-Science) [7] is another emerging class of
applications suitable for these platforms.

An interesting common feature of these applications is
that the input data (a) continuously grows and (b) old data
does not change1. Even the storage systems developed for
storing such data (The Google File-system [6], HDFS [18]
and Cosmos [2]) take advantage of the append-only nature
of these large data sets. Although the logs change only
incrementally, many useful computations need to process
repeatedly the entire data set.

In this paper we are investigating the problem ofin-
crementalizingthe computation as well: given a compu-
tation of a large data set, we attempt to perform it effi-
ciently on an incrementally larger data-set, reusing most
of the effort. This leads to faster executions, higher cluster
throughput and less energy consumed. We are interested
in finding solutions which automate this task as much as
possible.

The space of incremental computations presents sev-
eral non-trivial trade-offs: (1) particular versus generic
– a custom solution can be much more efficient than a
generic one by taking advantage of the problem seman-
tics; (2) automatic versus manual; (3) time versus space

1We will ignore the privacy requirements which may cause
the heads of the logs to be discarded after a bounded retention
period.

–incremental computations require the storage of previ-
ous and/or partial results which are reused; and (4) safety
versus efficiency – there are many practical obstacles to
defining precisely the “sameness” of two computations,
and a very strict notion of “sameness” may prevent reuse.

While we are not claiming to provide a definitive solu-
tion, we are exploring in this paper two interesting points
of the design space.

Our first solution is calledIdentical Computation(IDE),
and is fully automatic. IDE is a form of memoization,
which caches partial results and reuses them if they re-
occur unchanged in the context of future computations.
The second solution is calledMergeable Computation
(MER), and it requires some support from the user: the
programmer has to provide amerging function which
combines the results computed on an old version of the
input with the results computed on the additional input
data (delta). Intuitively, IDE is similar to the Unixmake
tool, which avoids recomputing partial results that have
not changed, while MER is similar to the Unixpatchtool,
which “fixes” the output given incremental changes in the
input.

We have implemented our solution in the context of the
Dryad [11] large-scale computing system (described in
Section 2). Our solution depends on properties of Dryad
computations, which hold for other mainstream compu-
tational models as well (such as Map-Reduce); most no-
tably, we rely on the fact that computation is composed
from a collection of purely functional processes – in con-
sequence, each process is idempotent and deterministic,
and it produces the same outputs when re-executed with
the same inputs.

The contributions of this paper are: (1) we present two
incremental computation algorithms for the context of
large-scale distributed systems; (2) we discuss practical
issues for implementing these algorithms in real systems;
and (3) we provide a preliminary evaluation of our algo-
rithms in a real implementation.

2 Background and Model

Dryad [11] is a computational model which allows pro-
grammers to express distributed batch computations as
collections of processes connected via point-to-point
channels. The computation is a graph: the graph vertices
are processes, and the graph edges are the communica-
tion channels. Dryad constrains the computation graph to
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Figure 1: Incremental Computation System Architecture

be acyclic (a DAG). Dryad computations can be seen as
sets ofstages; all the vertices in a stage are performing the
same computation. The output of any stage is a collection
of records, partitioned into disjoint pieces. We represent
the global input and output of a Dryad job with a special
kind of stage, composed just from “storage” vertices. We
denote inputs by I and outputs by O; input partitions are
I1, I2, (e.g., Figure 2).

We assume that the job input and output data is stored
on a persistent storage system, similar to the Google File
System [6] or Cosmos [2]. Each file is stored as a se-
quence of disjoint extents, representing disjoint parts of
the data. We also call these extentspartitions. Further-
more, we assume that stored data isimmutable, and can
only change by the addition of new complete extents.
We denote the “new” extents by delta, or∆. The con-
tent of each extent is protected with an MD5 checksum;
we call these checksumsfingerprints. The storage system
maintains such fingerprints to detect data corruption using
scrubbing.

Our algorithms have been tested with Dryad computa-
tions jobs that change dynamically during job execution
(Dryad supports runtime job graph changes in restricted
ways).

3 System Architecture

Figure 1 presents the architecture of our system, which
is formed by two components: (1) thererun logic, an ex-
tension of the Dryad Job Manager2, which detects reused
computation and performs job graph rewriting and (2) the
cache server, a network service with a put/get interface.
The Rerun Logic: In the Dryad system job graphs are
generated programmatically (i.e., the user uses an API to
construct job graphs with arbitrary acyclic shapes). The
rerun logic intercepts the job DAG after it has been gener-
ated, just prior to its execution. The rerun logic performs
the following actions:

(1) Analysis: based on the job DAG and the method used
(IDE or MER), this step identifies a set of previous re-
sults that may be present in the cache. These results corre-
spond to channels from previously executed DAGs (only
channels implemented as files are considered3). The re-

2The Dryad job manager is a centralized process which gen-
erates the computation DAG and oversees its execution.

3Dryad supports other types of (non-persistent) channels,
such as TCP pipes and in-memory FIFOs.

run logic then checks the cache server for the presence of
these results.

(2) DAG rewriting: If some of the results identified at
step (1) are found in the cache, the rerun logic modifies
the job DAG according to the IDE or MER algorithms, to
reuse these results.

(3) Running: Dryad executes the DAG as a regular job.
(4) Caching: After the successful completion of a job,

the rerun logic selects partial results that may be useful
for future computations and inserts them into the cache.
Services of the distributed storage system are called to
persist the contents of temporary channels.

Throughout this paper we evaluate IDE and MER in iso-
lation; see Section 7 about combining them.

As a safety measure, the rerun logic always keeps
the unmodified Dryad job graph as a back-up for re-
execution, in case some of the cached data turns out to
be unavailable.
The Cache Server: is a generic cluster-level service with
a put/get API operating on key-value pairs. The typical
use of the cache server is mapping fingerprints of com-
putations to persistent storage extents. The cache server
can implement arbitrary cache replacement policies; the
distributed file system garbage-collects the unreferenced
extents.

4 Identical Computation (IDE)

IDE stores and reuses the results of computations already
performed in the past. We call theseidentical computa-
tions. In our context, we reuse computations at the vertex
granularity; two vertices are identical if they execute the
same code on the same input data. This notion naturally
extends to entire computational (sub)DAGs.

To identify identical computations, we extendfinger-
prints to handle computations, not just data. For example,
the fingerprint of a vertex computation captures informa-
tion about the executable invoked, input channels, and the
environment of the process, including start-up arguments.
Engineering the fingerprints involves some trade-offs be-
tween conservativeness and efficiency; for example, some
changes in the environment (e.g., the current time) or in
the executable (e.g., a program re-linked after a bugfix)
may not change the computation behavior.

We further extend fingerprints to also capture the struc-
ture (computation and data) of a Dryad DAG. We asso-
ciate a fingerprint with any vertex and channel in a Dryad
job. The fingerprint is computed recursively on the job
DAG structure: the fingerprint of a vertex is a function of
the fingerprints of its input channels and the fingerprint
of the binary executed; the fingerprint of a channel is a
function of the vertex which writes to the channel, and
of the output channel number (a vertex can have many
output channels). Intuitively, the fingerprint of a channel



Outputs
New Data IDE Rewrite

C C

AAdd

Count C C

A A

CC

I2Input

(partitions)
Identical

sub DAG

Count I1 Count I2
I1

New

Input

Cached

data

I2I1 I3 I3

A B Csub DAG Input dataA B C

Figure 2: IDE applied to a record-counting application.
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Figure 3: IDE applied to a histogram application.

summarizes the effects of the complete sub-DAG that can
influence the channel data. Two channels with the same
fingerprint are guaranteed to contain identical data.

Note that IDE can reuse computations between unre-
lated jobs (and not just between multiple instances of the
same job executed on incrementally larger data).

Figure 2 shows a simple example of using IDE on an
application that counts the records in a partitioned input
file. The first execution (Figure 2A) is performed on an in-
put file with two data partitions. EachC (Count) vertex
performs the count on one partition; theA (Add) vertex
aggregates the individual partition counts. Subsequently,
the input file grows to three partitions (Figure 2B). The
Count vertices operating on the I1 and I2 partitions pro-
duce the same results as in the previous execution. If their
outputs have been cached, IDE can reuse them by rewrit-
ing the computation as shown in Figure 2C. The first two
input channels of theAdd vertex are replaced with stored
data containing the cached outputs of theCount vertices
from the Figure 2A execution.

In general, given two computational DAGs,G1 = F (I)
andG2 = F (I + ∆), where+ denotes concatenation,
IDE locates a common sub-DAGC of both graphs and
replaces the instance ofC in G2 with the outputs ofC
computed and cached inG1. This method provides most
savings whenC is the largest common subgraph ofG1

andG2. Figure 3 shows the original and IDE DAG of an
application that computes the histogram of records in a
partitioned file.
Implementation: IDE is fully automatic and transparent
to Dryad users; the users submit unmodified Dryad jobs,
and the system rewrites them to compute only incremental
results if the cached data is available.

A challenge for IDE is the choice of the channels to
cache after a successful execution; the system has to make
this choice before knowing the shape of future compu-
tations. Caching all channels is impractical, so we have

implemented a heuristic to select a small set of channels
to cache. Intuitively, the heuristic attempts to discover a
stage where all vertices are affected by∆; the inputs to
this stage are cached. The heuristic marks vertices using
a breadth-first traversal of the DAG starting from one ran-
dom input partition. This process stops when marked ver-
tices isolate inputs from outputs (one cannot create a path
of unmarked vertices from an input vertex to an output
one). The input channels of the vertices on the frontier of
the marked region are cached. For the example in Figure
3 the heuristic chooses to cache the outputs of the hash-
distribution stage. In all applications that we have investi-
gated this heuristic has provided optimal results (discov-
ering the maximal common sub-DAG).

For IDE, the analysis phase of the rerun logic applies
the heuristic to determine a cut in the DAG and com-
putes the fingerprints for the channels in this cut. The
DAG-rewriting phase replaces each channel found in the
cache with its associated data partition from the cache,
and then removes the resulting dead code. Finally, the
caching phase inserts into the cache the channels selected
by the heuristic and not already cached.

5 Mergeable Computation (MER)

We define a functionF : I → O to bemergeableif there
exists a functionM : O × O → O, s.t. F (I + ∆) =
M(F (I), F (∆))4. In this paper we considerF to repre-
sent the entire computation (the result produced by the
output stage), but our approach can be extended to work
with intermediate results.

MER cachesF (I); givenI + ∆, MER only computes
F (∆), and uses the merge function to computeF (I +∆).
The programmer has to write the merge functionM . MER
automatically identifies∆, detects whether usable pre-
vious results exist and synthesizes the incremental DAG
F (∆). MER can be potentially more efficient than IDE
in reusing computation, because it can reuse much more
than just common identical sub-DAGs.

Figure 4 shows the effect of applying MER to the record
counting application presented earlier. Fig. 4(A) and (B)
show the computation on a 2-partition and 3-partition in-
put respectively. Fig. 4(C) shows the result provided by an
ideal implementation of MER: the DAG reuses the previ-
ous result and adds the count computed on the delta. In
this case the merge function is just integer addition; the
Add vertex itself implements the merge function.
Implementation: To identify whether a previous instance
of the application is present in the cache, MER has to ver-
ify the following conditions: (1) the executable code that
generates the job DAG has not changed from the previ-
ous execution, (2) the job executes on the same input file

4A more general definition for mergeable functions, which
we do not explore here, isF (I + ∆) = M(F (I),∆).
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and (3) the code of all vertices involved in the computa-
tion has not changed. MER ensures these conditions by
computing fingerprints. For simplicity, in the current im-
plementation, we ensure conditions (2) and (3) by restrict-
ing thatF (I) is isomorphic to a subgraph ofF (I + ∆)
(this is safe, but not optimal). MER stores the serialized
job DAGs into the cache server; the check for subgraph
isomorphism with unchanged vertices and inputs is per-
formed using the same fingerprints as used by IDE.

To identify∆, MER uses the serialized DAG of the pre-
vious execution from the cache.

To synthesize the incremental DAG forF (∆), MER
substitutes all partitions ofI with empty partitions in
F (I + ∆), i.e. F (∆) = F (I + ∆)|I=φ. Applying this
algorithm to the record-counting application results in the
DAG in Figure 4(D). The resultingF (∆) can be improved
by using semantic information, e.g., removing vertices
that produce empty outputs when given empty inputs, by
replacing them with empty partitions, etc.

Fig. 5 shows the result of applying the MER algorithm
to the histogram computation example, presented earlier
in Fig.3. Fig. 5(A) shows the optimal way to perform
the incremental computation when∆ is a single partition.
Fig. 5(B) depicts the implementation actually built by our
algorithm, (which removed the hash-partitioning vertices
with empty inputs). Note that even if vertices with empty
inputs are not removed from the graph, the time to execute
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them is very likely small.

6 Evaluation

Incremental computation can translate intofaster execu-
tion, higher cluster job throughputand reduced energy
consumption. On the downside, incremental computations
require more storage, for caching intermediate results.
The correct trade-off depends on many factors; for ap-
plications which perform large data reductions the stor-
age trade-off may be very effective. Note that the required
cache storage size does not depend on the number of exe-
cutions of a job and is, in general, less than the size of the
input data. The time to compute fingerprints is negligible
compared to the job execution and scheduling.

We evaluate IDE and MER on a 8 node cluster, us-
ing a single application that computes a histogram of
file records (we use the query histogram application from
Section 6.3 in [11], a job similar, but more complex than
the one in Figure 3). The machines are running 64-bit
Windows Server 2003, are equipped with dual-core pro-
cessors and 8 GB of memory, and have four 400GB disks
each, used in a RAID 0 configuration.

Fig. 6 presents the execution times for the histogram ap-
plication when increasing the input file by four extents at a
time (250MB) or 20 extents at at time (1.3GB). The mea-
surements were carried in increasing order of input size,
using the cached data from the previous run to start the
next run. We skipped input sizes in the range 50-90GB
to speed up evaluation (but all shown data points use the
same amount of incremental data).

In this example, both MER and IDE provide significant
savings (up to 80-90%) and the execution time is essen-
tially linear in the input size. For this application, MER
outperforms IDE for large data. There are two reasons: (1)
more computation is saved by MER and (2) MER takes
advantage of a large reduction size for reused results. In
fact, MER runs almost in constant time for very large in-
puts (the duration is a function of|∆| + |O| (output), and
after a while|O| stops increasing). However, note that
changing some parameters of the job graph (e.g., number



of partitions per stage) can influence the performance: we
saw variations which improved IDE by 50% while slow-
ing down MER by 30% (results not shown). The small dip
above 30 GB of input for both IDE and MER is caused by
us turning off the interactive visualization of the job DAG;
the DAGs at this size are large enough to consume most
of the CPU of the job manager machine for computing the
graph layout. The two sudden spikes in performance for
IDE likely represent transient effects in the cluster.

7 Discussion and Related Work

Map-Reduce: Our techniques can also be applied to
Map-Reduce programs. When applied to a Map-Reduce
DAG, IDE can reuse only the output of the map layer, if
the number of reducers is unchanged. MER provides more
potential for re-utilization, but the map-reduce paradigm
puts severe constraints on the shape of the merge func-
tion, which has to be written to perform both the reduction
on the∆ and the actual merge with the previous output.
However, for some applications, the reduce function could
already implement the merge function (reduce needs to
not change the data format and be associative).

Combining IDE and MER: Unfortunately, applying
one of the two techniques reduces the potential savings
of the other. However, IDE and MER can be used in con-
junction by applying MER first and using IDE for the in-
cremental DAG (F (∆)).

Related Work: The concept of incremental computa-
tion has been around for more than four decades in the
programming languages community. Memoization (e.g.
[14, 17, 12]) avoids re-executing functions with no side
effects by caching the results of prior invocations. IDE
is just an instance of memoization applied in the context
of distributed data sets. The Vesta [9] software configu-
ration management, which uses extensively memoization,
provided the impetus for the current project. The dual of
memoization, the dependence graph (e.g. [4, 10, 1]) tracks
changes in the control graph of the program between two
executions, and, based on data dependencies from new in-
put, executes only the affected control blocks. Since this
technique requires detailed visibility in the internal dy-
namic program state (distributed in this case), it is more
complicated than our proposals.

Our work is also related to the problem of incremental
view update in databases (e.g. [8, 5]). The append-only
inputs assumption makes our problem easier, while the
distributed nature of our computations makes the problem
harder. View update solutions tend to be similar to our
MER method, but they take advantage of the semantics of
the database operators. More recently, continuous query
techniques related to our MER method were applied to
the Map-Reduce framework [13].

In this paper, we study incremental computation in the

context of large-scale distributed computing. We make
few assumptions about the semantics of computation and
thus we use little information for performing optimiza-
tions. There is clearly a lot of interesting work to be per-
formed in this space. We can envision a rich space of so-
lutions built on top of our generic framework.
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