
 1

Automatic Mutual Exclusion
Michael Isard and Andrew Birrell

Microsoft Research, Silicon Valley

Abstract

We propose a new concurrent programming model, Automatic
Mutual Exclusion (AME). In contrast to lock-based programming,
and to other programming models built over software transactional
memory (STM), we arrange that all shared state is implicitly
protected unless the programmer explicitly specifies otherwise. An
AME program is composed from serializable atomic fragments. We
include features allowing the programmer to delimit and manage the
fragments to achieve appropriate program structure and performance.
We explain how I/O activity and legacy code can be incorporated
within an AME program. Finally, we outline ways in which future
work might expand on these ideas. The resulting programming model
makes it easier to write correct code than incorrect code. It favors
correctness over performance for simple programs, while allowing
advanced programmers the expressivity they need.

1 Introduction

Since the 1960’s, system programmers have been
trying to create and maintain concurrent programs.
Initially, this desire arose as a means to allow the
computer to continue useful program execution while
some other part of the overall computation was unable
to make progress because of a peripheral device. It also
arose with the development of systems that shared the
processor between multiple computations. Those who
thought carefully about the problem abstracted it into
the concept of multiple concurrent threads of execution
(typically called processes at the time). In most analys-
es (CSP being an exception) the threads communicate
through shared memory, and cooperate by achieving
mutual exclusion on access to the memory [4]. Over
time, this has become standardized as concurrent
threads using shared memory and mutexes.

Unfortunately, in the real world most programmers
find it difficult to use threads, shared memory, and
mutexes correctly. In practice most mainstream appli-
cations tend to exhibit too little concurrency (they
deadlock, or the user interface freezes during a network
I/O, or they perform poorly on a multi-processor), or
else they exhibit too much concurrency (by providing
an incorrect answer, especially on a multi-processor,
and usually non-deterministically).

A variety of problems with mutexes seem to cause
much of this difficulty. One is the constraint that all the
mutexes in a program have a partial order in which
they are acquired, in order to prevent deadlocks. While
this is a manageable constraint in systems built by

small teams of programmers, it can be very difficult to
meet in large systems, and extremely difficult over the
long maintenance life of such systems. It is especially
difficult to debug situations in which such deadlocks
occur with very low probability, or where they are not
formally a deadlock at all, just an unpleasantly long
delay (such as waiting for a network service with a
mutex held).

A second difficulty is often described as lack of
composability. If a programmer wishes to layer an
atomic operation on top of an existing abstraction (for
example, adding an atomic “move” operation to move
an item between two hash tables), this is difficult to do
without access to the internal mutexes and mutual
exclusion algorithms of the lower-level abstraction.

Finally, the existing mutex designs are fundamental-
ly fragile: performance requirements (real or imagi-
nary) create an incentive for the programmer to be
“clever”, and to minimize the use of mutexes, or their
scope, or the amount of data protected by them. While
this can be achieved correctly by a sufficiently clever
programmer, it makes for tricky and un-maintainable
programs — especially after the clever programmer has
moved on to other projects.

Transactional memory (in software today, in hard-
ware later) shows promise as an alternative to coopera-
tion through mutexes [5]. It is generally presented to
the programmer as atomic blocks, where the program-
mer delineates a region of the program to be executed
as a transaction. The runtime system takes responsibili-
ty for executing the program in such a way as to have
the same semantics as if the atomic blocks had been
executed in some serialized order.

Serialized transactions have an appealing simplicity,
and atomic blocks alleviate quite a lot of the problems
of mutexes. The program no longer needs a partial
order on its mutual exclusion calls, because if a conflict
occurs the transaction machinery will detect it, and will
almost certainly fix it by a suitable series of transaction
aborts and retries. Atomic blocks also fix the composa-
bility problem: in the hash table “move” example,
wrapping an atomic block around the get-insert-delete
sequence will create the desired atomicity.

Unfortunately, just providing atomic blocks will not
solve all our mutual exclusion problems. Fundamental-
ly, they still require the programmer to decide what
regions of the program need protection, and what data
must be protected. Furthermore, the defaults are the

 2

wrong way round: when a programmer cleverly de-
cides that it is correct to narrow a mutual exclusion
range, or to exclude some data from it, the programmer
does so by removing text from the source code. We
believe that this makes programs harder to understand,
and quite difficult to maintain. For large systems (the
only ones that are really difficult in this area), this is a
critical defect. Put another way: with atomic blocks,
the default and simplest program is one with no atomic
blocks. Unfortunately, it is also the one least likely to
work correctly.

The highest-level goal of this paper is to point out
that the mechanism of transactional memory can be
presented to the programmers with language constructs
other than atomic blocks. We propose one such ar-
rangement, but we have no doubt that others will
follow.

Our proposal here is a new programming model,
Automatic Mutual Exclusion (AME), which we believe
(hope) will cause programmers to be more likely to
create applications that are concurrent, correct, and
responsive, and which will remain so over the applica-
tions’ life cycles. We do this by reducing the pro-
grammers’ responsibility for concurrency and synchro-
nization. By default, an AME program is correctly
synchronized: if the programmer thinks not at all about
mutual exclusion, there will be no data races. We then
allow the programmer to take this correctly synchro-
nized program and optimize it, by adding to the source
code, not subtracting from it. Optimizing the concur-
rency behavior of an AME program requires actions
where the programmer explicitly declares the places
where the optimizations occur, in a way that we believe
will be maintainable.

2 Asynchronous method calls

We begin by describing a simplified AME program-
ming model that supports basic concurrent event-based
programming. The remainder of the AME model is
described in sections 3 and 4.

In this simplified model, running an AME program
consists of executing a set of asynchronous method
calls. The AME system guarantees that the program
execution is equivalent to executing each of these calls
in some serialized order (i.e., atomically). AME
achieves concurrency by overlapping the execution of
the calls, subject to maintaining this guarantee. The
program terminates when all its asynchronous method
calls have completed.

Initially, the set consists of a call of main(…) in-
itiated by the AME system. Within an asynchronous

method call, the program can create another asyn-
chronous method call by executing:

async MethodName(MethodArguments);

In terms of the formal semantics of the program, the
newly created asynchronous method call will be
serialized after the current one. In terms of program
structure, the async construct is reminiscent of forking
a thread in thread-like systems, or posting an event in
event-based systems (but subject to the serialization
guarantee).

While the semantics are serialized execution, natu-
rally the AME system will attempt to execute the set of
available asynchronous method calls concurrently,
within the available resources and subject to strategies
(TBD!) that prevent excessive transaction aborts.

To achieve our serialization guarantee, our basic
implementation is that each asynchronous method call
will be executed by the AME system as an STM (or
HTM) transaction, within a thread from a pool pro-
vided by the AME system. However, the semantics say
nothing about transactions: if the AME system can
determine that a cheaper synchronization scheme (such
as mutexes, or no locking at all) will achieve the
serialization guarantee for a particular program execu-
tion, it is free to use that scheme.

When a transaction initiates other asynchronous me-
thod calls, their execution is deferred until the initiating
transaction commits. If the initiating transaction aborts,
they are discarded. When it commits, they are made
available for execution (in an indeterminate order).

Within an asynchronous method call, the program is
not permitted to take actions with side-effects that the
AME system cannot undo: this enables an implementa-
tion using transactional memory. In particular, I/O
activity cannot occur (but we’ll deal with that below).

This much of the design allows programming with
concurrent non-blocking asynchronous method calls
(or events). The program is correct, in that the calls can
share memory without any risk of races. The calls can
execute concurrently when possible, and the AME
system will ensure that the result is a valid serialization
of the events. The programmer has written no synchro-
nization code.

We still need give the programmer optimization
mechanisms: some control over transaction scheduling
(section 2.1), and some way to split up transactions to
reduce the frequency of aborts or to enable rational
program structure (section 3). We also need to provide
for legacy code, and for code with non-abortable side-
effects such as actual I/O (section 4).

 3

2.1 Blocking an asynchronous method

An asynchronous method may contain any number of
calls to the system-supplied method:

BlockUntil(<predicate>);

From the programmer’s perspective, the code of an
asynchronous method executes to completion only if
all the executed calls of BlockUntil within the
method have predicates that evaluate to true.

BlockUntil’s implementation does nothing if the
predicate is true, but otherwise it aborts the current
transaction and re-executes it later (at a time when it is
likely to succeed). This is like Retry in some systems.

For example, a blocking read from a shared queue
could be implemented as:

BlockUntil(queue.Length() > 0);

data = queue.PopFront();

Notice that the AME system has a lot of information
available when BlockUntil is called with false: it
can in principle determine what non-local memory
affected the evaluation of the predicate, and it can
determine when other asynchronous method calls later
modify that memory. We envisage taking advantage of
this to optimize the scheduling of the transaction retry.

2.2 Examples and discussion

At this point we introduce some example fragments
that illustrate common concurrent idioms. By conven-
tion variables that live in the shared heap begin ‘g_’
(for “global”). The first example performs overlapped
reading from a file, where 4 blocks are in flight at any
given time (error handling is ignored for simplicity,
and we elide the details of how I/O is performed within
the file library, since that needs section 4):

void OpenRead(FileName name) {

 File f = StartOpen(name);

 async StartRead(f);

}

void StartRead(File f) {

 BlockUntil(f.Opened);

 g_nextOffset = 0;

 g_nextOffsetToEnqueue = 0;

 for (int i=0; i<4; ++i) {

 ReadBlock block = new ReadBlock;

 block.offset = g_nextOffset;

 block.file = f;

 g_nextOffset += block.size;

 f.StartRead(block);

 async WaitForBlock(block);

 }

}

void WaitForBlock(ReadBlock block) {

 BlockUntil(block.ready &&

 g_nextOffsetToEnqueue ==

 block.offset);

 if (block.EOF) {

 g_endOfFile = true;

 } else {

 g_queuedBlocks.PushBack(block);

 block.offset = g_nextOffset;

 g_nextOffset += block.size;

 block.file.StartRead(block);

 async WaitForBlock(block);

 }

 g_nextOffsetToEnqueue += block.size;

}

The second example simulates a fragment of a comput-
er game, implementing the logical thread of control for
a particular character that is moving autonomously and
interacting with its environment:

void StartZombie() {

 Zombie z;

 z.Initialize();

 /* schedule the first move */
 async UpdateZombie(z);

}

void UpdateZombie(Zombie z) {

 Time now = GetTimeNow();

 BlockUntil(now - z.lastUpdate >

 z.updateInterval);

 z.lastUpdate = now;

 MoveAround(z);

 if (Distance(z, g_player) <

 DeathRadius) {

 KillPlayer();

 } else {

 /* schedule the next move */
 async UpdateZombie(z);

 }

}

The final example illustrates a data-parallel computa-
tion that processes every item notionally “in parallel”
and inserts the results into an output list whose order-
ing is undefined:

 4

void DoBatch(Queue inQ, Queue outQ) {

 BlockUntil(inQ.Length() > 0 ||

 g_finished);

 while (inQ.Length() > 0) {

 Item i = inQ.PopFront();

 async DoItem(i, outQ);

 }

 if (!g_finished) {

 async DoBatch(inQ, outQ);

 }

}

void DoItem(Item i, Queue outQ) {

 DoSlowProcessing(i);

 /* Writing to outQ here would serialize the slow
 processing, because of contention on outQ */
 async DoOutput(i, outQ);

}

void DoOutput(Item i, Queue outQ) {

 outQ.PushBack(i);

}

Note that none of these examples require the program-
mer to make a determination of what shared state must
be protected; the AME system protects the state auto-
matically. The programmer is not tempted to consider,
for example, leaving the code in StartRead after the
BlockUntil call unprotected. We believe this auto-
matic concurrency protection will be extremely valua-
ble in complex and long-lived programming projects.

The event-based AME programming model is attrac-
tive because it makes it extremely difficult to write a
“fine-grain” concurrency bug: every method call is
always executed in its entirety or not at all. We also
believe that the mental model of serialized execution is
among the simplest concurrency abstractions for
programmers to understand. Higher level races are still
possible (e.g., by assuming that some state is preserved
unmodified between asynchronous method calls).

3 Fragmenting an asynchronous method

With the facilities of the previous section, the pro-
grammer will inevitable be faced with a situation
where a conceptually single asynchronous method call
must be split up. In the simplest cases, this arises when
the call creates too many memory conflicts with other
calls, causing too many transaction aborts. (This is
analogous to holding a mutex for too wide a range of
the program.)

As explained by several previous authors [1,3], other
cases arise that require splitting up events in a pure

event-based model, producing program structure that
can be unpleasant, and unstable. For example, if a
previously non-blocking method call is modified to
require a blocking action (e.g., a hash table is modified
to use disk storage instead of main memory), the event-
based style would require that the method, and all of its
callers, gets split into two separate methods (a request
and a response handler). This is sometimes referred to
as “stack ripping”.

Our solution to both of these problems is to allow an
asynchronous method call to contain one or more calls
to the system method Yield. A Yield call breaks a
method into multiple atomic fragments. This is similar
to breaking an atomic block into multiple adjacent
blocks, except that our atomic fragments are delimited
dynamically by the calls of Yield, not statically
scoped like explicit atomic blocks.

With this enhancement, the overall execution of a
program is guaranteed to be a serialization of its atomic
fragments. We (intend to) implement Yield by com-
mitting the current transaction and starting a new one.

A BlockUntil call only blocks execution of the
current atomic fragment (the code following the most
recent Yield()), or equivalently, it only retries the
transaction begun after the most recent Yield.

A Yield call can occur within any method, includ-
ing libraries. Since Yield splits atomic executions, it is
critical that a caller be aware of this possibility: the
caller’s own shared state becomes visible to other
asynchronous method calls, and might be changed by
other asynchronous method calls. We require that any
method containing a Yield makes this explicit statical-
ly, by having a type signature such as the following:

ReturnType MethodName(Args) yields {…}

Any synchronous call to such a method must be deco-
rated:

int foo = Method(x) yielding;

Of course a function that calls a yielding method
must itself be marked yields.

Notice the effect on program maintenance. If a pre-
viously non-yielding library changes its implementa-
tion to use Yield, then the library’s callers will get a
compilation error because of the lack of a yielding
annotation. The callers must then either determine that
it is correct to expose their shared state (i.e., their
invariants are true), or they must remove the offending
call.

Here as elsewhere in the design we have chosen to
require that the programmer makes explicit the places
where races might occur, leaving the default case

 5

correctly synchronized, despite the inconvenience this
causes.

We might be concerned that most library calls will
contain some code path that leads to a yielding
method. The result would be that most code would
become tainted as yields, eliminating any useful
information content from the annotation. However,
there is no incentive to insert a call to Yield in a
library method unless that method is either extremely
long-running, or must block, e.g. waiting for synchron-
ous I/O. Consequently we view the potential for a
library to become tainted as a strength rather than a
weakness. Some of the worst performance bugs arise
from calling a method that is normally fast, but that
blocks occasionally due to rare corner cases. Under our
model, the programmer will know to avoid such calls
or else plan for the possibility of a slow execution.

At this point we can rewrite our zombie and queue
examples more concisely:

void RunZombie() yields {

 Zombie z;

 z.Initialize();

 do {

 Yield();

 Time now = GetTimeNow();

 BlockUntil(now - z.lastUpdate >

 z.updateInterval);

 z.lastUpdate = now;

 MoveAround(z);

 if (Distance(z, g_player) <

 DeathRadius) {

 KillPlayer();

 }

 } while (Distance(z, g_player) >=

 DeathRadius);

}

void DoQueue(Queue inQ,

 Queue outQ) yields {

 do {

 Yield();

 BlockUntil(inQ.Length() > 0 ||

 g_finished);

 while (inQ.Length() > 0) {

 Item i = inQ.PopFront();

 async DoItem(i, outQ);

 }

 } while (!g_finished);

}

void DoItem(Item i,

 Queue outQ) yields {

 DoSlowProcessing(i);

 Yield();

 outQ.PushBack(i);

}

In addition to the obvious structural improvements,
notice that the zombie z variable is now allocated on
the thread’s private stack. In a transactional environ-
ment thread-private variables are more efficient, and
making this clear may make optimization easier.

4 Unsynchronized Fragments

There are times when automatic mutual exclusion
prevents the program from doing what it needs to do.
The two obvious cases are access to legacy code that
doesn’t use this machinery, and code with non-
abortable side-effects such as I/O. To support these we
allow the following:

unprotected { … }

This construct terminates the current atomic fragment
(typically by committing the current transaction), then
executes the inner block, then starts a new atomic
fragment. Any method that uses unprotected must
be flagged as yields.

The typical pattern for a region of the program that
wants to perform I/O (probably by calling legacy
libraries, but perhaps by calling the kernel directly, or
even by writing to device registers) will be as follows.
Within an atomic fragment, the program decides on the
details of the I/O operations and stores them on a
thread-local queue. It then uses unprotected to
execute code that extracts the requests from the thread-
local queue and passes them into the actual I/O system.
Typically, this dance will be performed within some
AME library code or wrappers. The library calls that
perform synchronous I/O will consequently be marked
as yields, as expected.

However, an asynchronous I/O library (such as the
StartOpen and StartRead methods used in the
example in Section 2.2) does not need to have its
methods marked as yields, because the library
internally defers the actual I/O calls by invoking them
through asynchronous method calls.

Notice that since this particular pattern of using un-
protected touches only thread-local and non-
transacted memory, it is not subject to the issues of
privatization common in transactional memory designs
when interacting with non-transactional code. Other
uses of unprotected might have privatization prob-
lems, and we are considering making them illegal.

 6

5 Discussion

This proposal is not about inventing fundamentally
new semantics for concurrency. Primarily, we are
exploring a new way to present our existing mechan-
isms to the programmer. We intend that the program-
mer can write straightforward code first, and achieve a
good level of concurrency with little risk of races. As
the program develops, it can be optimized to achieve
better concurrency, using mechanisms that flag the
places where concurrency has been improved at the
risk of introducing races. We encourage correctness
first, performance second, and maintainability always.
We support a non-blocking event-driven style, or a
blocking procedural style with Yield, or any conve-
nient combination.

The design is intended for real programs (though
limited by today’s STM performance). We intend to
handle programs that perform disk and network I/O
and that interact with the user. We intend to be able to
handle large systems, with long lifetimes.

One way to view this design is to compare it with
either single-threaded cooperative multi-tasking sys-
tems, or with single-threaded event based systems such
as the JavaScript side of AJAX. Those programming
models are similar to AME, except that AME can
execute the program with real concurrency, utilizing
real multi-processors — with very little extra effort
from the programmer.

There are numerous research questions that we see
arising from the AME proposal. Most obviously, we
need to implement AME, develop some real expe-
rience, and determine whether it is in fact useful. We
have a good STM implementation available to us, and
we plan to modify our compiler to support the AME
extensions instead of explicit atomic blocks.

Critical to AME performance is the scheduling of
transactions so as to minimize the amount of work that
will be aborted. We are hopeful that BlockUntil will
help in this (more so than a simple Retry statement).

There are optimizations available in some cases of
BlockUntil, especially where it occurs as a guard at
the start of an atomic fragment (for example, we might

not need to use transactions for those cases). We are
considering whether to restrict its use to just those
situations.

Transactional memory designs will continue to be
impractical until the system can optimize by eliminat-
ing transactional overhead for memory accesses that
are in fact thread-private. We have some tentative but
incomplete ideas for doing this.

Our Yield operation could be enhanced by having
the programmer specify a subset of the transactional
variables that should be modifiable during the yield.
This would enhance correctness by allowing the system
to report an error if some other transaction attempts to
modify the non-modifiable state.

Overall, we are excited by the possibility of the
AME ideas. We believe they make it much more likely
that programmers will create correct, efficient, and
maintainable concurrent programs.

6 References

There are many important works in this area. We have
assembled the 20 that we found most useful on a web
page [4]. Below, we cite only the ones most specific to
this paper.

1. Adya, A. et al “Cooperative Task Management

without Manual Stack Management”, Proc. Usenix
2002 Annual Technical Conference, June 2002.

2. Bacon, D. et al “The ‘Double-Checked Locking is
Broken’ Declaration”, http://tinyurl.com/1rja,
viewed December 2006.

3. Von Behren, R et al “Why Events Are A Bad Idea”,
Proc. 9th Workshop on Hot Topics in Operating
Systems, May 2003.

4. Birrell, A. “A Selected Bibliography of Concurren-
cy”, http://birrell.org/andrew/concurrency/, Decem-
ber 2006.

5. Harris, T. “Composable Memory Transactions”,
Proc. 10th Symposium on Principles and Practice of
Parallel Programming, June 2005.

