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Abstract 

We propose a new concurrent programming model, Automatic 
Mutual Exclusion (AME). In contrast to lock-based programming, 
and to other programming models built over software transactional 
memory (STM), we arrange that all shared state is implicitly 
protected unless the programmer explicitly specifies otherwise.  An 
AME program is composed from serializable atomic fragments. We 
include features allowing the programmer to delimit and manage the 
fragments to achieve appropriate program structure and performance. 
We explain how I/O activity and legacy code can be incorporated 
within an AME program. Finally, we outline ways in which future 
work might expand on these ideas. The resulting programming model 
makes it easier to write correct code than incorrect code. It favors 
correctness over performance for simple programs, while allowing 
advanced programmers the expressivity they need. 

1 Introduction 

Since the 1960’s, system programmers have been 
trying to create and maintain concurrent programs. 
Initially, this desire arose as a means to allow the 
computer to continue useful program execution while 
some other part of the overall computation was unable 
to make progress because of a peripheral device. It also 
arose with the development of systems that shared the 
processor between multiple computations. Those who 
thought carefully about the problem abstracted it into 
the concept of multiple concurrent threads of execution 
(typically called processes at the time). In most analys-
es (CSP being an exception) the threads communicate 
through shared memory, and cooperate by achieving 
mutual exclusion on access to the memory [4]. Over 
time, this has become standardized as concurrent 
threads using shared memory and mutexes. 

Unfortunately, in the real world most programmers 
find it difficult to use threads, shared memory, and 
mutexes correctly. In practice most mainstream appli-
cations tend to exhibit too little concurrency (they 
deadlock, or the user interface freezes during a network 
I/O, or they perform poorly on a multi-processor), or 
else they exhibit too much concurrency (by providing 
an incorrect answer, especially on a multi-processor, 
and usually non-deterministically). 

A variety of problems with mutexes seem to cause 
much of this difficulty. One is the constraint that all the 
mutexes in a program have a partial order in which 
they are acquired, in order to prevent deadlocks. While 
this is a manageable constraint in systems built by 

small teams of programmers, it can be very difficult to 
meet in large systems, and extremely difficult over the 
long maintenance life of such systems. It is especially 
difficult to debug situations in which such deadlocks 
occur with very low probability, or where they are not 
formally a deadlock at all, just an unpleasantly long 
delay (such as waiting for a network service with a 
mutex held). 

A second difficulty is often described as lack of 
composability. If a programmer wishes to layer an 
atomic operation on top of an existing abstraction (for 
example, adding an atomic “move” operation to move 
an item between two hash tables), this is difficult to do 
without access to the internal mutexes and mutual 
exclusion algorithms of the lower-level abstraction. 

Finally, the existing mutex designs are fundamental-
ly fragile: performance requirements (real or imagi-
nary) create an incentive for the programmer to be 
“clever”, and to minimize the use of mutexes, or their 
scope, or the amount of data protected by them. While 
this can be achieved correctly by a sufficiently clever 
programmer, it makes for tricky and un-maintainable 
programs — especially after the clever programmer has 
moved on to other projects. 

Transactional memory (in software today, in hard-
ware later) shows promise as an alternative to coopera-
tion through mutexes [5]. It is generally presented to 
the programmer as atomic blocks, where the program-
mer delineates a region of the program to be executed 
as a transaction. The runtime system takes responsibili-
ty for executing the program in such a way as to have 
the same semantics as if the atomic blocks had been 
executed in some serialized order. 

Serialized transactions have an appealing simplicity, 
and atomic blocks alleviate quite a lot of the problems 
of mutexes. The program no longer needs a partial 
order on its mutual exclusion calls, because if a conflict 
occurs the transaction machinery will detect it, and will 
almost certainly fix it by a suitable series of transaction 
aborts and retries. Atomic blocks also fix the composa-
bility problem: in the hash table “move” example, 
wrapping an atomic block around the get-insert-delete 
sequence will create the desired atomicity. 

Unfortunately, just providing atomic blocks will not 
solve all our mutual exclusion problems. Fundamental-
ly, they still require the programmer to decide what 
regions of the program need protection, and what data 
must be protected. Furthermore, the defaults are the 
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wrong way round: when a programmer cleverly de-
cides that it is correct to narrow a mutual exclusion 
range, or to exclude some data from it, the programmer 
does so by removing text from the source code. We 
believe that this makes programs harder to understand, 
and quite difficult to maintain. For large systems (the 
only ones that are really difficult in this area), this is a 
critical defect. Put another way: with atomic blocks, 
the default and simplest program is one with no atomic 
blocks. Unfortunately, it is also the one least likely to 
work correctly. 

The highest-level goal of this paper is to point out 
that the mechanism of transactional memory can be 
presented to the programmers with language constructs 
other than atomic blocks. We propose one such ar-
rangement, but we have no doubt that others will 
follow.  

Our proposal here is a new programming model, 
Automatic Mutual Exclusion (AME), which we believe 
(hope) will cause programmers to be more likely to 
create applications that are concurrent, correct, and 
responsive, and which will remain so over the applica-
tions’ life cycles. We do this by reducing the pro-
grammers’ responsibility for concurrency and synchro-
nization. By default, an AME program is correctly 
synchronized: if the programmer thinks not at all about 
mutual exclusion, there will be no data races. We then 
allow the programmer to take this correctly synchro-
nized program and optimize it, by adding to the source 
code, not subtracting from it. Optimizing the concur-
rency behavior of an AME program requires actions 
where the programmer explicitly declares the places 
where the optimizations occur, in a way that we believe 
will be maintainable. 

2 Asynchronous method calls 

We begin by describing a simplified AME program-
ming model that supports basic concurrent event-based 
programming. The remainder of the AME model is 
described in sections 3 and 4. 

In this simplified model, running an AME program 
consists of executing a set of asynchronous method 
calls. The AME system guarantees that the program 
execution is equivalent to executing each of these calls 
in some serialized order (i.e., atomically). AME 
achieves concurrency by overlapping the execution of 
the calls, subject to maintaining this guarantee. The 
program terminates when all its asynchronous method 
calls have completed. 

Initially, the set consists of a call of main(…) in-
itiated by the AME system. Within an asynchronous 

method call, the program can create another asyn-
chronous method call by executing: 

 
async MethodName(MethodArguments); 

In terms of the formal semantics of the program, the 
newly created asynchronous method call will be 
serialized after the current one. In terms of program 
structure, the async construct is reminiscent of forking 
a thread in thread-like systems, or posting an event in 
event-based systems (but subject to the serialization 
guarantee). 

While the semantics are serialized execution, natu-
rally the AME system will attempt to execute the set of 
available asynchronous method calls concurrently, 
within the available resources and subject to strategies 
(TBD!) that prevent excessive transaction aborts. 

To achieve our serialization guarantee, our basic 
implementation is that each asynchronous method call 
will be executed by the AME system as an STM (or 
HTM) transaction, within a thread from a pool pro-
vided by the AME system. However, the semantics say 
nothing about transactions: if the AME system can 
determine that a cheaper synchronization scheme (such 
as mutexes, or no locking at all) will achieve the 
serialization guarantee for a particular program execu-
tion, it is free to use that scheme. 

When a transaction initiates other asynchronous me-
thod calls, their execution is deferred until the initiating 
transaction commits. If the initiating transaction aborts, 
they are discarded. When it commits, they are made 
available for execution (in an indeterminate order). 

Within an asynchronous method call, the program is 
not permitted to take actions with side-effects that the 
AME system cannot undo: this enables an implementa-
tion using transactional memory. In particular, I/O 
activity cannot occur (but we’ll deal with that below). 

This much of the design allows programming with 
concurrent non-blocking asynchronous method calls 
(or events). The program is correct, in that the calls can 
share memory without any risk of races. The calls can 
execute concurrently when possible, and the AME 
system will ensure that the result is a valid serialization 
of the events. The programmer has written no synchro-
nization code. 

We still need give the programmer optimization 
mechanisms: some control over transaction scheduling 
(section 2.1), and some way to split up transactions to 
reduce the frequency of aborts or to enable rational 
program structure (section 3). We also need to provide 
for legacy code, and for code with non-abortable side-
effects such as actual I/O (section 4). 
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2.1 Blocking an asynchronous method 

An asynchronous method may contain any number of 
calls to the system-supplied method: 
 

BlockUntil(<predicate>); 

 
From the programmer’s perspective, the code of an 
asynchronous method executes to completion only if 
all the executed calls of BlockUntil within the 
method have predicates that evaluate to true. 

BlockUntil’s implementation does nothing if the 
predicate is true, but otherwise it aborts the current 
transaction and re-executes it later (at a time when it is 
likely to succeed). This is like Retry in some systems. 

For example, a blocking read from a shared queue 
could be implemented as: 
 
BlockUntil(queue.Length() > 0); 

data = queue.PopFront(); 

 
Notice that the AME system has a lot of information 
available when BlockUntil is called with false: it 
can in principle determine what non-local memory 
affected the evaluation of the predicate, and it can 
determine when other asynchronous method calls later 
modify that memory. We envisage taking advantage of 
this to optimize the scheduling of the transaction retry. 

2.2 Examples and discussion 

At this point we introduce some example fragments 
that illustrate common concurrent idioms. By conven-
tion variables that live in the shared heap begin ‘g_’ 
(for “global”). The first example performs overlapped 
reading from a file, where 4 blocks are in flight at any 
given time (error handling is ignored for simplicity, 
and we elide the details of how I/O is performed within 
the file library, since that needs section 4): 
 

void OpenRead(FileName name) { 

  File f = StartOpen(name); 

  async StartRead(f); 

} 

 

void StartRead(File f) { 

  BlockUntil(f.Opened); 

  g_nextOffset = 0; 

  g_nextOffsetToEnqueue = 0; 

  for (int i=0; i<4; ++i) { 

    ReadBlock block = new ReadBlock; 

    block.offset = g_nextOffset; 

    block.file = f; 

    g_nextOffset += block.size; 

    f.StartRead(block); 

    async WaitForBlock(block); 

  } 

} 

 
void WaitForBlock(ReadBlock block) { 

  BlockUntil(block.ready && 

             g_nextOffsetToEnqueue == 

               block.offset); 

  if (block.EOF) { 

    g_endOfFile = true; 

  } else { 

    g_queuedBlocks.PushBack(block); 

    block.offset = g_nextOffset; 

    g_nextOffset += block.size; 

    block.file.StartRead(block); 

    async WaitForBlock(block); 

  } 

  g_nextOffsetToEnqueue += block.size; 

} 

 
The second example simulates a fragment of a comput-
er game, implementing the logical thread of control for 
a particular character that is moving autonomously and 
interacting with its environment: 
 
void StartZombie() { 

    Zombie z; 

    z.Initialize(); 

    /* schedule the first move */ 
    async UpdateZombie(z); 

} 

 
void UpdateZombie(Zombie z) { 

  Time now = GetTimeNow(); 

  BlockUntil(now - z.lastUpdate > 

             z.updateInterval); 

  z.lastUpdate = now; 

  MoveAround(z); 

  if (Distance(z, g_player) < 

    DeathRadius) { 

    KillPlayer(); 

  } else { 

    /* schedule the next move */ 
    async UpdateZombie(z); 

  } 

} 

 
The final example illustrates a data-parallel computa-
tion that processes every item notionally “in parallel” 
and inserts the results into an output list whose order-
ing is undefined: 
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void DoBatch(Queue inQ, Queue outQ) { 

  BlockUntil(inQ.Length() > 0 || 

             g_finished); 

  while (inQ.Length() > 0) { 

    Item i = inQ.PopFront(); 

    async DoItem(i, outQ); 

  } 

  if (!g_finished) { 

    async DoBatch(inQ, outQ); 

  } 

} 

 

void DoItem(Item i, Queue outQ) { 

  DoSlowProcessing(i); 

  /* Writing to outQ here would serialize the slow 
     processing, because of contention on outQ */ 
  async DoOutput(i, outQ); 

} 

 

void DoOutput(Item i, Queue outQ) { 

  outQ.PushBack(i); 

} 

Note that none of these examples require the program-
mer to make a determination of what shared state must 
be protected; the AME system protects the state auto-
matically. The programmer is not tempted to consider, 
for example, leaving the code in StartRead after the 
BlockUntil call unprotected. We believe this auto-
matic concurrency protection will be extremely valua-
ble in complex and long-lived programming projects. 

The event-based AME programming model is attrac-
tive because it makes it extremely difficult to write a 
“fine-grain” concurrency bug: every method call is 
always executed in its entirety or not at all. We also 
believe that the mental model of serialized execution is 
among the simplest concurrency abstractions for 
programmers to understand. Higher level races are still 
possible (e.g., by assuming that some state is preserved 
unmodified between asynchronous method calls). 

3 Fragmenting an asynchronous method 

With the facilities of the previous section, the pro-
grammer will inevitable be faced with a situation 
where a conceptually single asynchronous method call 
must be split up. In the simplest cases, this arises when 
the call creates too many memory conflicts with other 
calls, causing too many transaction aborts. (This is 
analogous to holding a mutex for too wide a range of 
the program.) 

As explained by several previous authors [1,3], other 
cases arise that require splitting up events in a pure 

event-based model, producing program structure that 
can be unpleasant, and unstable. For example, if a 
previously non-blocking method call is modified to 
require a blocking action (e.g., a hash table is modified 
to use disk storage instead of main memory), the event-
based style would require that the method, and all of its 
callers, gets split into two separate methods (a request 
and a response handler). This is sometimes referred to 
as “stack ripping”. 

Our solution to both of these problems is to allow an 
asynchronous method call to contain one or more calls 
to the system method Yield. A Yield call breaks a 
method into multiple atomic fragments. This is similar 
to breaking an atomic block into multiple adjacent 
blocks, except that our atomic fragments are delimited 
dynamically by the calls of Yield, not statically 
scoped like explicit atomic blocks. 

With this enhancement, the overall execution of a 
program is guaranteed to be a serialization of its atomic 
fragments. We (intend to) implement Yield by com-
mitting the current transaction and starting a new one. 

A BlockUntil call only blocks execution of the 
current atomic fragment (the code following the most 
recent Yield()), or equivalently, it only retries the 
transaction begun after the most recent Yield. 

A Yield call can occur within any method, includ-
ing libraries. Since Yield splits atomic executions, it is 
critical that a caller be aware of this possibility: the 
caller’s own shared state becomes visible to other 
asynchronous method calls, and might be changed by 
other asynchronous method calls. We require that any 
method containing a Yield makes this explicit statical-
ly, by having a type signature such as the following: 
 

ReturnType MethodName(Args) yields {…} 

 
Any synchronous call to such a method must be deco-
rated: 
 
int foo = Method(x) yielding; 

 
Of course a function that calls a yielding method 
must itself be marked yields. 

Notice the effect on program maintenance. If a pre-
viously non-yielding library changes its implementa-
tion to use Yield, then the library’s callers will get a 
compilation error because of the lack of a yielding 
annotation. The callers must then either determine that 
it is correct to expose their shared state (i.e., their 
invariants are true), or they must remove the offending 
call. 

Here as elsewhere in the design we have chosen to 
require that the programmer makes explicit the places 
where races might occur, leaving the default case 
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correctly synchronized, despite the inconvenience this 
causes. 

We might be concerned that most library calls will 
contain some code path that leads to a yielding 
method. The result would be that most code would 
become tainted as yields, eliminating any useful 
information content from the annotation. However, 
there is no incentive to insert a call to Yield in a 
library method unless that method is either extremely 
long-running, or must block, e.g. waiting for synchron-
ous I/O. Consequently we view the potential for a 
library to become tainted as a strength rather than a 
weakness. Some of the worst performance bugs arise 
from calling a method that is normally fast, but that 
blocks occasionally due to rare corner cases. Under our 
model, the programmer will know to avoid such calls 
or else plan for the possibility of a slow execution. 

At this point we can rewrite our zombie and queue 
examples more concisely: 
 
void RunZombie() yields { 

  Zombie z; 

  z.Initialize(); 

  do { 

    Yield(); 

    Time now = GetTimeNow(); 

    BlockUntil(now - z.lastUpdate > 

               z.updateInterval); 

    z.lastUpdate = now; 

    MoveAround(z); 

    if (Distance(z, g_player) < 

        DeathRadius) { 

      KillPlayer(); 

    } 

  } while (Distance(z, g_player) >= 

           DeathRadius); 

} 

 

void DoQueue(Queue inQ, 

       Queue outQ) yields { 

  do { 

    Yield(); 

    BlockUntil(inQ.Length() > 0 || 

               g_finished); 

    while (inQ.Length() > 0) { 

      Item i = inQ.PopFront(); 

      async DoItem(i, outQ); 

    } 

  } while (!g_finished); 

} 

 

void DoItem(Item i, 

       Queue outQ) yields { 

  DoSlowProcessing(i); 

  Yield(); 

  outQ.PushBack(i); 

} 

 
In addition to the obvious structural improvements, 
notice that the zombie z variable is now allocated on 
the thread’s private stack. In a transactional environ-
ment thread-private variables are more efficient, and 
making this clear may make optimization easier. 

4 Unsynchronized Fragments 

There are times when automatic mutual exclusion 
prevents the program from doing what it needs to do. 
The two obvious cases are access to legacy code that 
doesn’t use this machinery, and code with non-
abortable side-effects such as I/O. To support these we 
allow the following: 
 

unprotected { … } 

This construct terminates the current atomic fragment 
(typically by committing the current transaction), then 
executes the inner block, then starts a new atomic 
fragment. Any method that uses unprotected must 
be flagged as yields. 

The typical pattern for a region of the program that 
wants to perform I/O (probably by calling legacy 
libraries, but perhaps by calling the kernel directly, or 
even by writing to device registers) will be as follows. 
Within an atomic fragment, the program decides on the 
details of the I/O operations and stores them on a 
thread-local queue. It then uses unprotected to 
execute code that extracts the requests from the thread-
local queue and passes them into the actual I/O system. 
Typically, this dance will be performed within some 
AME library code or wrappers. The library calls that 
perform synchronous I/O will consequently be marked 
as yields, as expected. 

However, an asynchronous I/O library (such as the 
StartOpen and StartRead methods used in the 
example in Section 2.2) does not need to have its 
methods marked as yields, because the library 
internally defers the actual I/O calls by invoking them 
through asynchronous method calls. 

Notice that since this particular pattern of using un-
protected touches only thread-local and non-
transacted memory, it is not subject to the issues of 
privatization common in transactional memory designs 
when interacting with non-transactional code. Other 
uses of unprotected might have privatization prob-
lems, and we are considering making them illegal. 
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5 Discussion 

This proposal is not about inventing fundamentally 
new semantics for concurrency. Primarily, we are 
exploring a new way to present our existing mechan-
isms to the programmer. We intend that the program-
mer can write straightforward code first, and achieve a 
good level of concurrency with little risk of races. As 
the program develops, it can be optimized to achieve 
better concurrency, using mechanisms that flag the 
places where concurrency has been improved at the 
risk of introducing races. We encourage correctness 
first, performance second, and maintainability always. 
We support a non-blocking event-driven style, or a 
blocking procedural style with Yield, or any conve-
nient combination. 

The design is intended for real programs (though 
limited by today’s STM performance). We intend to 
handle programs that perform disk and network I/O 
and that interact with the user. We intend to be able to 
handle large systems, with long lifetimes. 

One way to view this design is to compare it with 
either single-threaded cooperative multi-tasking sys-
tems, or with single-threaded event based systems such 
as the JavaScript side of AJAX. Those programming 
models are similar to AME, except that AME can 
execute the program with real concurrency, utilizing 
real multi-processors — with very little extra effort 
from the programmer. 

There are numerous research questions that we see 
arising from the AME proposal. Most obviously, we 
need to implement AME, develop some real expe-
rience, and determine whether it is in fact useful. We 
have a good STM implementation available to us, and 
we plan to modify our compiler to support the AME 
extensions instead of explicit atomic blocks. 

Critical to AME performance is the scheduling of 
transactions so as to minimize the amount of work that 
will be aborted. We are hopeful that BlockUntil will 
help in this (more so than a simple Retry statement). 

There are optimizations available in some cases of 
BlockUntil, especially where it occurs as a guard at 
the start of an atomic fragment (for example, we might 

not need to use transactions for those cases). We are 
considering whether to restrict its use to just those 
situations. 

Transactional memory designs will continue to be 
impractical until the system can optimize by eliminat-
ing transactional overhead for memory accesses that 
are in fact thread-private. We have some tentative but 
incomplete ideas for doing this. 

Our Yield operation could be enhanced by having 
the programmer specify a subset of the transactional 
variables that should be modifiable during the yield. 
This would enhance correctness by allowing the system 
to report an error if some other transaction attempts to 
modify the non-modifiable state. 

Overall, we are excited by the possibility of the 
AME ideas. We believe they make it much more likely 
that programmers will create correct, efficient, and 
maintainable concurrent programs. 
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